{"title":"Peramalan Indeks Harga Saham dengan Autoregressive Moving Average Generelized Autoregressive Conditional Heteroscedasticity (ARMA-GARCH)","authors":"Nur Najmi Layla, E. Kurniati, D. Suhaedi","doi":"10.29313/JRM.V1I1.103","DOIUrl":null,"url":null,"abstract":"Abstract. The stock price index is the information the public needs to know the development of stock price movements. Stock price forecasting will provide a better basis for planning and decision making. The forecasting model that is often used to model financial and economic data is the Autoregressive Moving Average (ARMA). However, this model can only be used for data with the assumption of stationarity to variance (homoscedasticity), therefore an additional model is needed that can model data with heteroscedasticity conditions, namely the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model. This study uses data partitioning in pre-pandemic conditions and during the pandemic, Insample data with pre-pandemic conditions and insample data during pandemic conditions. Based on the research results, the GARCH model (1,1) was obtained with the conditions before the pandemic and GARCH (1,2) during the pandemic condition. The forecasting model obtained has met the eligibility requirements of the GARCH model. If the forecasting model fulfills the eligibility requirements, then MAPE calculations are performed to see the accuracy of the forecasting model. And obtained MAPE in the conditions before the pandemic and during the pandemic in the very good category. \nAbstrak. Indeks harga saham merupakan informasi yang diperlukan masyarakat untuk mengetahui perkembangan pergerakan harga saham. Peramalan harga saham akan memberikan dasar yang lebih baik bagi perencanaan dan pengambilan keputusan. Model peramalan yang sering digunakan untuk memodelkan data keuangan dan ekonomi adalah Autoregrresive Moving Average (ARMA). Namun model tersebut hanya dapat digunakan untuk data dengan asumsi stasioneritas terhadap varian (homoskedastisitas), oleh karena itu diperlukan suatu model tambahan yang bisa memodelkan data dengan kondisi heteroskedastisitas, yaitu model Generalized Autoregressive Conditional Heteroscedastisity (GARCH). Penelitian ini menggunakan partisi data pada kondisi sebelum pandemi dan saat pandemi berlangsung data Insample dengan kondisi sebelum pandemi dan insample pada kondisi pandemi. Berdasarkan hasil penelitian, maka didapat model GARCH (1,1) dengan kondisi sebelum pandemi dan GARCH (1,2) saat kondisi pandemi. Model peramalan yang didapat sudah memenuhi syarat kelayakan model GARCH. Apabila model peramalan terpenuhi syarat kelayakannya maka dilakukan perhitungan MAPE untuk melihat keakuratan model peramalannya. Dan diperoleh MAPE pada kondisi sebelum pandemi dan saat pandemi dengan kategori sangat baik. ","PeriodicalId":31272,"journal":{"name":"Jurnal Riset Pendidikan Matematika","volume":"200 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Riset Pendidikan Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29313/JRM.V1I1.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. The stock price index is the information the public needs to know the development of stock price movements. Stock price forecasting will provide a better basis for planning and decision making. The forecasting model that is often used to model financial and economic data is the Autoregressive Moving Average (ARMA). However, this model can only be used for data with the assumption of stationarity to variance (homoscedasticity), therefore an additional model is needed that can model data with heteroscedasticity conditions, namely the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model. This study uses data partitioning in pre-pandemic conditions and during the pandemic, Insample data with pre-pandemic conditions and insample data during pandemic conditions. Based on the research results, the GARCH model (1,1) was obtained with the conditions before the pandemic and GARCH (1,2) during the pandemic condition. The forecasting model obtained has met the eligibility requirements of the GARCH model. If the forecasting model fulfills the eligibility requirements, then MAPE calculations are performed to see the accuracy of the forecasting model. And obtained MAPE in the conditions before the pandemic and during the pandemic in the very good category.
Abstrak. Indeks harga saham merupakan informasi yang diperlukan masyarakat untuk mengetahui perkembangan pergerakan harga saham. Peramalan harga saham akan memberikan dasar yang lebih baik bagi perencanaan dan pengambilan keputusan. Model peramalan yang sering digunakan untuk memodelkan data keuangan dan ekonomi adalah Autoregrresive Moving Average (ARMA). Namun model tersebut hanya dapat digunakan untuk data dengan asumsi stasioneritas terhadap varian (homoskedastisitas), oleh karena itu diperlukan suatu model tambahan yang bisa memodelkan data dengan kondisi heteroskedastisitas, yaitu model Generalized Autoregressive Conditional Heteroscedastisity (GARCH). Penelitian ini menggunakan partisi data pada kondisi sebelum pandemi dan saat pandemi berlangsung data Insample dengan kondisi sebelum pandemi dan insample pada kondisi pandemi. Berdasarkan hasil penelitian, maka didapat model GARCH (1,1) dengan kondisi sebelum pandemi dan GARCH (1,2) saat kondisi pandemi. Model peramalan yang didapat sudah memenuhi syarat kelayakan model GARCH. Apabila model peramalan terpenuhi syarat kelayakannya maka dilakukan perhitungan MAPE untuk melihat keakuratan model peramalannya. Dan diperoleh MAPE pada kondisi sebelum pandemi dan saat pandemi dengan kategori sangat baik.
摘要。股票价格指数是公众了解股票价格走势发展所需要的信息。股票价格预测将为规划和决策提供更好的依据。通常用于金融和经济数据建模的预测模型是自回归移动平均线(ARMA)。然而,该模型只能用于假设方差平稳性(均方差)的数据,因此需要一个额外的模型来对异方差条件下的数据进行建模,即广义自回归条件异方差(GARCH)模型。本研究使用大流行前和大流行期间的数据划分、大流行前的样本数据和大流行期间的样本数据。在此基础上,分别得到大流行前和大流行期间的GARCH(1,2)模型(1,1)。所得预测模型满足GARCH模型的适用性要求。如果预测模型满足资格要求,则执行MAPE计算以查看预测模型的准确性。并在大流行前和大流行期间的条件下获得了非常好的MAPE。Abstrak。我是杨家祥,我是杨家祥,我是杨家祥。马来西亚人民议会议员,请允许我说:“我是说,我是说,我是说,我是说,马来西亚人民议会议员。”模型peramalan yang sering digunakan untuk memodelkan数据keangan经济数据自回归移动平均(ARMA)。Namun模型(tersebut hanya dapat digunakan untuk)、oleh karena (diperlukan suatu)模型(tambahan yang bisa memodelkan)数据(dengan kondisi heteroskedisi)、yyitu模型广义自回归条件异方差(GARCH)。Penelitian ini mongunakan partisi data pada kondisi sebelum流行病数据样本dada kondisi sebelum流行病数据样本pada kondisi流行病数据样本。Berdasarkan hasil penelitian, maka didapat模型GARCH (1,1) dengan kondisi sebelum pandemi dan GARCH (1,2) saat kondisi pandemi。模型peramalan yang引用了GARCH模型。Apabila模型peramanya terpenuhi syarat kelayakannya maka dilakukan perhitungan MAPE untuk melihat keakuratan模型peramanya。“”“”“”“”“”“”“”“”“”“”“”“”