Scalable Polymeric Few-Nanometer Organosilica Membranes for Pre-Combustion CO 2 Capture

Lingxiang Zhu, Liang Huang, Surendar R. Venna, Adrienne K. Blevins, Yifu Ding, David P. Hopkinson, M. Swihart, Haiqing Lin
{"title":"Scalable Polymeric Few-Nanometer Organosilica Membranes for Pre-Combustion CO 2 Capture","authors":"Lingxiang Zhu, Liang Huang, Surendar R. Venna, Adrienne K. Blevins, Yifu Ding, David P. Hopkinson, M. Swihart, Haiqing Lin","doi":"10.2139/ssrn.3778364","DOIUrl":null,"url":null,"abstract":"Nanoporous silica membranes exhibit excellent H2/CO2 separation properties for sustainable H2 production and CO2 capture but are prepared via complicated thermal processes above 400 oC, which prevent their scalable production at low cost. Here, we demonstrate the rapid fabrication (within 6 minutes) of ultrathin silica membranes (≈6 nm) via oxygen plasma treatment of polydimethylsiloxane based thin-film composite membranes at 20 oC. The resulting organosilica membranes exhibit H2 permeance of 280 - 930 GPU (1 GPU = 3.347×10-10 mol m-2 s-1 Pa-1) and H2/CO2 selectivity of 93 - 32 at 200 °C, far surpassing state-of-the-art membranes and Robeson’s upper bound for H2/CO2 separation. When challenged with a 3-day simulated syngas test containing water vapor and a 340-day stability test at 200 °C, the membrane shows stable separation performance. The robust H2/CO2 separation properties coupled with excellent scalability demonstrate the great potential of these organosilica membranes for economic H2 production with minimal carbon emissions.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3778364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoporous silica membranes exhibit excellent H2/CO2 separation properties for sustainable H2 production and CO2 capture but are prepared via complicated thermal processes above 400 oC, which prevent their scalable production at low cost. Here, we demonstrate the rapid fabrication (within 6 minutes) of ultrathin silica membranes (≈6 nm) via oxygen plasma treatment of polydimethylsiloxane based thin-film composite membranes at 20 oC. The resulting organosilica membranes exhibit H2 permeance of 280 - 930 GPU (1 GPU = 3.347×10-10 mol m-2 s-1 Pa-1) and H2/CO2 selectivity of 93 - 32 at 200 °C, far surpassing state-of-the-art membranes and Robeson’s upper bound for H2/CO2 separation. When challenged with a 3-day simulated syngas test containing water vapor and a 340-day stability test at 200 °C, the membrane shows stable separation performance. The robust H2/CO2 separation properties coupled with excellent scalability demonstrate the great potential of these organosilica membranes for economic H2 production with minimal carbon emissions.
用于燃烧前co2捕获的可伸缩聚合少纳米有机硅膜
纳米多孔二氧化硅膜具有优异的H2/CO2分离性能,可用于可持续的H2生产和CO2捕获,但其制备需要经过400℃以上的复杂热过程,这阻碍了其低成本的规模化生产。在这里,我们展示了在20℃下,通过氧等离子体处理聚二甲基硅氧烷薄膜复合膜,在6分钟内快速制造出超薄二氧化硅膜(≈6 nm)。所得有机硅膜在200°C下的H2透过率为280 - 930 GPU (1 GPU = 3.347×10-10 mol m-2 s-1 Pa-1), H2/CO2选择性为93 - 32,远远超过了目前最先进的膜和Robeson的H2/CO2分离上限。经过3天含水蒸气的模拟合成气测试和340天200℃的稳定性测试,该膜表现出稳定的分离性能。强大的H2/CO2分离性能以及出色的可扩展性证明了这些有机二氧化硅膜在低碳排放的经济制氢方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信