An Optimal Algorithm for Certifying Monotone Functions

Meghal Gupta, N. Manoj
{"title":"An Optimal Algorithm for Certifying Monotone Functions","authors":"Meghal Gupta, N. Manoj","doi":"10.48550/arXiv.2204.01224","DOIUrl":null,"url":null,"abstract":"Given query access to a monotone function $f\\colon\\{0,1\\}^n\\to\\{0,1\\}$ with certificate complexity $C(f)$ and an input $x^{\\star}$, we design an algorithm that outputs a size-$C(f)$ subset of $x^{\\star}$ certifying the value of $f(x^{\\star})$. Our algorithm makes $O(C(f) \\cdot \\log n)$ queries to $f$, which matches the information-theoretic lower bound for this problem and resolves the concrete open question posed in the STOC '22 paper of Blanc, Koch, Lange, and Tan [BKLT22]. We extend this result to an algorithm that finds a size-$2C(f)$ certificate for a real-valued monotone function with $O(C(f) \\cdot \\log n)$ queries. We also complement our algorithms with a hardness result, in which we show that finding the shortest possible certificate in $x^{\\star}$ may require $\\Omega\\left(\\binom{n}{C(f)}\\right)$ queries in the worst case.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"25 1","pages":"207-212"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.01224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Given query access to a monotone function $f\colon\{0,1\}^n\to\{0,1\}$ with certificate complexity $C(f)$ and an input $x^{\star}$, we design an algorithm that outputs a size-$C(f)$ subset of $x^{\star}$ certifying the value of $f(x^{\star})$. Our algorithm makes $O(C(f) \cdot \log n)$ queries to $f$, which matches the information-theoretic lower bound for this problem and resolves the concrete open question posed in the STOC '22 paper of Blanc, Koch, Lange, and Tan [BKLT22]. We extend this result to an algorithm that finds a size-$2C(f)$ certificate for a real-valued monotone function with $O(C(f) \cdot \log n)$ queries. We also complement our algorithms with a hardness result, in which we show that finding the shortest possible certificate in $x^{\star}$ may require $\Omega\left(\binom{n}{C(f)}\right)$ queries in the worst case.
单调函数的最优证明算法
给定对具有证书复杂度$C(f)$和输入$x^{\star}$的单调函数$f\colon\{0,1\}^n\to\{0,1\}$的查询访问权,我们设计了一个算法,该算法输出验证$f(x^{\star})$值的$x^{\star}$的一个大小为$C(f)$的子集。我们的算法对$f$进行$O(C(f) \cdot \log n)$查询,该查询匹配该问题的信息论下界,并解决了Blanc, Koch, Lange, and Tan [BKLT22]的STOC '22论文中提出的具体开放问题。我们将这个结果扩展到一个算法,该算法通过$O(C(f) \cdot \log n)$查询为一个实值单调函数找到一个size- $2C(f)$证书。我们还用硬度结果补充了我们的算法,其中我们表明,在最坏的情况下,在$x^{\star}$中找到最短的可能证书可能需要查询$\Omega\left(\binom{n}{C(f)}\right)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信