{"title":"MPC-Based Virtual Inertia Control of Islanded Microgrid Load Frequency Control and DoS Attack Vulnerability Analysis","authors":"Athira M. Mohan, N. Meskin, H. Mehrjerdi","doi":"10.1109/SGRE53517.2022.9774122","DOIUrl":null,"url":null,"abstract":"The aim of the work is to design a model predictive control (MPC)-based auxiliary (virtual inertia (VI)) controller for the load frequency control (LFC) of a non-linear microgrid under high renewable energy source (RES) penetration and system inertia parameter variation. Microgrid systems equipped with nondispatchable RESs like wind and solar power generation units can create frequency instability in addition to the frequency deviation induced by the load changes. This resulting frequency variation is difficult to be handled by the available primary and secondary controls. Hence, in addition to the primary and secondary LFCs, an MPC-based auxiliary control strategy is proposed for the microgrid LFC system. Further, the proposed control strategy is compared with other different control schemes to confirm the efficacy of the proposed control method. In addition, the impact of denial of service (DoS) attack in microgrid LFC system with different control schemes is analyzed to understand the system’s vulnerability to DoS attack.","PeriodicalId":64562,"journal":{"name":"智能电网与可再生能源(英文)","volume":"17 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能电网与可再生能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/SGRE53517.2022.9774122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The aim of the work is to design a model predictive control (MPC)-based auxiliary (virtual inertia (VI)) controller for the load frequency control (LFC) of a non-linear microgrid under high renewable energy source (RES) penetration and system inertia parameter variation. Microgrid systems equipped with nondispatchable RESs like wind and solar power generation units can create frequency instability in addition to the frequency deviation induced by the load changes. This resulting frequency variation is difficult to be handled by the available primary and secondary controls. Hence, in addition to the primary and secondary LFCs, an MPC-based auxiliary control strategy is proposed for the microgrid LFC system. Further, the proposed control strategy is compared with other different control schemes to confirm the efficacy of the proposed control method. In addition, the impact of denial of service (DoS) attack in microgrid LFC system with different control schemes is analyzed to understand the system’s vulnerability to DoS attack.