A P-HIERARCHICAL ERROR ESTIMATOR FOR A FEM-BEM COUPLING OF AN EDDY CURRENT PROBLEM IN R 3

IF 0.3 Q4 MATHEMATICS, APPLIED
Florian Leydecker, M. Maischak, E. Stephan, Matthias T. Teltscher
{"title":"A P-HIERARCHICAL ERROR ESTIMATOR FOR A FEM-BEM COUPLING OF AN EDDY CURRENT PROBLEM IN R 3","authors":"Florian Leydecker, M. Maischak, E. Stephan, Matthias T. Teltscher","doi":"10.12941/JKSIAM.2013.17.139","DOIUrl":null,"url":null,"abstract":"We extend a p-hierarchical decomposition of the second degree finite element space of Nedelec for tetrahedral meshes in three dimensions given in [1] to meshes with hexahedral elements, and derive p-hierarchical decompositions of the second degree finite element space of Raviart-Thomas in two dimensions for triangular and quadrilateral meshes. After having proved stability of these subspace decompositions and requiring certain saturation assumptions to hold, we construct a local a posteriori error estimator for fem and bem coupling of a time-harmonic electromagnetic eddy current problem in R 3 . We perform some numerical tests to underline reliability and efficiency of the estimator and test its usefulness in an adaptive refinement scheme.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"26 1","pages":"139-170"},"PeriodicalIF":0.3000,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2013.17.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We extend a p-hierarchical decomposition of the second degree finite element space of Nedelec for tetrahedral meshes in three dimensions given in [1] to meshes with hexahedral elements, and derive p-hierarchical decompositions of the second degree finite element space of Raviart-Thomas in two dimensions for triangular and quadrilateral meshes. After having proved stability of these subspace decompositions and requiring certain saturation assumptions to hold, we construct a local a posteriori error estimator for fem and bem coupling of a time-harmonic electromagnetic eddy current problem in R 3 . We perform some numerical tests to underline reliability and efficiency of the estimator and test its usefulness in an adaptive refinement scheme.
涡流问题中fem-bem耦合的p -层次误差估计
将[1]给出的三维四面体网格的Nedelec二阶有限元空间的p阶分解推广到六面体网格,并推导出二维三角形和四边形网格的Raviart-Thomas二阶有限元空间的p阶分解。在证明了这些子空间分解的稳定性并要求一定的饱和假设成立之后,我们构造了r3中时谐电磁涡流问题fem和bem耦合的局部后检误差估计器。我们进行了一些数值测试,以强调估计器的可靠性和效率,并测试其在自适应改进方案中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信