Modified Oscillation Results for Advanced Difference Equations of Second-Order

G. Chatzarakis, N. Indrajith, S. Panetsos, E. Thandapani
{"title":"Modified Oscillation Results for Advanced Difference Equations of Second-Order","authors":"G. Chatzarakis, N. Indrajith, S. Panetsos, E. Thandapani","doi":"10.1155/2022/3407776","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper, we present a new method to establish the oscillation of advanced second-order difference equations of the form <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>Δ</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>η</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mfenced>\n <mi>Δ</mi>\n <mi>υ</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mfenced>\n <mo>+</mo>\n <mi>ρ</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mfenced>\n <mi>υ</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>σ</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mn>0</mn>\n <mo>,</mo>\n </math>\n </jats:inline-formula> using the ordinary difference equation <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>Δ</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>η</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mfenced>\n <mi>Δ</mi>\n <mi>υ</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mfenced>\n <mo>+</mo>\n <mi>q</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mfenced>\n <mi>υ</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>ℓ</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mn>0</mn>\n <mo>.</mo>\n </math>\n </jats:inline-formula> The obtained results are new and improve the existing criteria. We provide examples to illustrate the main results.</jats:p>","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"11 1","pages":"3407776:1-3407776:5"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/3407776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a new method to establish the oscillation of advanced second-order difference equations of the form Δ η Δ υ + ρ υ σ = 0 , using the ordinary difference equation Δ η Δ υ + q υ + 1 = 0 . The obtained results are new and improve the existing criteria. We provide examples to illustrate the main results.
二阶高级差分方程的修正振动结果
在本文中,我们提出了一种新的方法来建立形式为Δ η z Δ υ的高级二阶差分方程的振动性r + r υ σr = 0,利用常差分方程Δ η z Δ υr + q r υ r + 1= 0。所得结果是新的,是对现有标准的改进。我们提供示例来说明主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信