{"title":"The numerical study of mechanical improvement of the metal annealing process during the manufacturing of the IC backend Damascene structure.","authors":"P. Y. Sun, Yuan Cadmus C.A., K. Chiang","doi":"10.1109/IMPACT56280.2022.9966686","DOIUrl":null,"url":null,"abstract":"This research establishes a set of transient finite element models to represent the mechanical impacts during the w/b process. Moreover, a finite element model of the BEOL structure, which consisted of 7 layers of copper metal stacks and an aluminum pad to represent the current frequent-used technology, is established to investigate the stress pattern. The results show that the Cu/low-k system produces larger stress levels in the column structure and induces a larger amount of deformation than the Al/TEOS system, and different annealing temperatures can affect the deformation behavior of the Cu stack.","PeriodicalId":13517,"journal":{"name":"Impact","volume":"27 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Impact","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT56280.2022.9966686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research establishes a set of transient finite element models to represent the mechanical impacts during the w/b process. Moreover, a finite element model of the BEOL structure, which consisted of 7 layers of copper metal stacks and an aluminum pad to represent the current frequent-used technology, is established to investigate the stress pattern. The results show that the Cu/low-k system produces larger stress levels in the column structure and induces a larger amount of deformation than the Al/TEOS system, and different annealing temperatures can affect the deformation behavior of the Cu stack.