{"title":"q-opers, QQ-systems, and Bethe Ansatz II: Generalized minors","authors":"P. Koroteev, A. Zeitlin","doi":"10.1515/crelle-2022-0084","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we describe a certain kind of q-connections on a projective line, namely Z-twisted ( G , q ) {(G,q)} -opers with regular singularities using the language of generalized minors. In part one we explored the correspondence between these q-connections and 𝑄𝑄 \\mathit{QQ} -systems/Bethe Ansatz equations. Here we associate to a Z-twisted ( G , q ) {(G,q)} -oper a class of meromorphic sections of a G-bundle, satisfying certain difference equations, which we refer to as ( G , q ) {(G,q)} -Wronskians. Among other things, we show that the 𝑄𝑄 \\mathit{QQ} -systems and their extensions emerge as the relations between generalized minors, thereby putting the Bethe Ansatz equations in the framework of cluster mutations known in the theory of double Bruhat cells.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"35 1","pages":"271 - 296"},"PeriodicalIF":1.2000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0084","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract In this paper, we describe a certain kind of q-connections on a projective line, namely Z-twisted ( G , q ) {(G,q)} -opers with regular singularities using the language of generalized minors. In part one we explored the correspondence between these q-connections and 𝑄𝑄 \mathit{QQ} -systems/Bethe Ansatz equations. Here we associate to a Z-twisted ( G , q ) {(G,q)} -oper a class of meromorphic sections of a G-bundle, satisfying certain difference equations, which we refer to as ( G , q ) {(G,q)} -Wronskians. Among other things, we show that the 𝑄𝑄 \mathit{QQ} -systems and their extensions emerge as the relations between generalized minors, thereby putting the Bethe Ansatz equations in the framework of cluster mutations known in the theory of double Bruhat cells.
期刊介绍:
The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.