{"title":"Semi-supervised reference-based sketch extraction using a contrastive learning framework","authors":"Chang Wook Seo, Amirsaman Ashtari, Jun-yong Noh","doi":"10.1145/3592392","DOIUrl":null,"url":null,"abstract":"Sketches reflect the drawing style of individual artists; therefore, it is important to consider their unique styles when extracting sketches from color images for various applications. Unfortunately, most existing sketch extraction methods are designed to extract sketches of a single style. Although there have been some attempts to generate various style sketches, the methods generally suffer from two limitations: low quality results and difficulty in training the model due to the requirement of a paired dataset. In this paper, we propose a novel multi-modal sketch extraction method that can imitate the style of a given reference sketch with unpaired data training in a semi-supervised manner. Our method outperforms state-of-the-art sketch extraction methods and unpaired image translation methods in both quantitative and qualitative evaluations.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"19 1","pages":"1 - 12"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3592392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sketches reflect the drawing style of individual artists; therefore, it is important to consider their unique styles when extracting sketches from color images for various applications. Unfortunately, most existing sketch extraction methods are designed to extract sketches of a single style. Although there have been some attempts to generate various style sketches, the methods generally suffer from two limitations: low quality results and difficulty in training the model due to the requirement of a paired dataset. In this paper, we propose a novel multi-modal sketch extraction method that can imitate the style of a given reference sketch with unpaired data training in a semi-supervised manner. Our method outperforms state-of-the-art sketch extraction methods and unpaired image translation methods in both quantitative and qualitative evaluations.