Light-Field DVR on GPU for Streaming Time-Varying Data

D. Ganter, Martin Alain, David J. Hardman, A. Smolic, M. Manzke
{"title":"Light-Field DVR on GPU for Streaming Time-Varying Data","authors":"D. Ganter, Martin Alain, David J. Hardman, A. Smolic, M. Manzke","doi":"10.2312/PG.20181283","DOIUrl":null,"url":null,"abstract":"Direct Volume Rendering (DVR) of volume data can be a memory intensive task in terms of footprint and cache-coherency. Rayguided methods may not be the best option to interactively render to light-fields due to feedback loops and sporadic sampling, and pre-computation can rule out time-varying data. We present a pipelined approach to schedule the rendering of sub-regions of streaming time-varying volume data while minimising intermediate sub-buffers needed, sharing the work load between CPU and GPU. We show there is significant advantage to using such an approach. CCS Concepts •Computing methodologies → Rendering; Parallel algorithms; Graphics systems and interfaces;","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"49 1","pages":"69-72"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PG.20181283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Direct Volume Rendering (DVR) of volume data can be a memory intensive task in terms of footprint and cache-coherency. Rayguided methods may not be the best option to interactively render to light-fields due to feedback loops and sporadic sampling, and pre-computation can rule out time-varying data. We present a pipelined approach to schedule the rendering of sub-regions of streaming time-varying volume data while minimising intermediate sub-buffers needed, sharing the work load between CPU and GPU. We show there is significant advantage to using such an approach. CCS Concepts •Computing methodologies → Rendering; Parallel algorithms; Graphics systems and interfaces;
基于GPU的时变数据流光场DVR
就内存占用和缓存一致性而言,卷数据的直接卷呈现(Direct Volume Rendering, DVR)可能是一项内存密集型任务。由于反馈回路和零星采样,光线引导方法可能不是交互渲染光场的最佳选择,并且预计算可以排除时变数据。我们提出了一种流水线方法来调度流时变体积数据的子区域的渲染,同时最小化所需的中间子缓冲区,在CPU和GPU之间共享工作负载。我们展示了使用这种方法的显著优势。•计算方法→渲染;并行算法;图形系统和接口;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信