Functor localization S-1() and Morita theory of category equivalences

IF 0.5 2区 数学 Q3 MATHEMATICS
Ousmane Djiby Diallo, Mohamed Ben Faraj Ben Maaouia, M. Sanghare
{"title":"Functor localization S-1() and Morita theory of category equivalences","authors":"Ousmane Djiby Diallo, Mohamed Ben Faraj Ben Maaouia, M. Sanghare","doi":"10.12988/IJA.2021.91531","DOIUrl":null,"url":null,"abstract":"The main results we show in this paper are: • if A is a ring, S a saturated multiplicative set of A which satisfies the left Ore conditions then the category S−1A−Mod of the left S−1A-modules is equivalent to the category of left A-modules S-divisible and S-torsion free (denoted by STDA−Mod). • If A and B are Morita equivalent rings (denoted A ≈ B) and if S is a central saturated multiplicative set of A then the rings S−1A and S−1B are Morita equivalent and for any (two-sided) ideal I of A, if J is the ideal of B corresponding to I, then S−1I is an ideal of S−1A corresponding to the ideal S−1J of S−1B. • IfA ≈ B then the categories of complexes Comp(A−Mod) and Comp(B −Mod) are equivalent ( Comp(A−Mod) ≈ Comp(B −Mod) for short) and for all central multiplicative set S of A, 138 O. D. Diallo, M. B. Maaouia and M. Sanghare Comp ( S−1A−Mod ) ≈ Comp ( S−1B −Mod )","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12988/IJA.2021.91531","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The main results we show in this paper are: • if A is a ring, S a saturated multiplicative set of A which satisfies the left Ore conditions then the category S−1A−Mod of the left S−1A-modules is equivalent to the category of left A-modules S-divisible and S-torsion free (denoted by STDA−Mod). • If A and B are Morita equivalent rings (denoted A ≈ B) and if S is a central saturated multiplicative set of A then the rings S−1A and S−1B are Morita equivalent and for any (two-sided) ideal I of A, if J is the ideal of B corresponding to I, then S−1I is an ideal of S−1A corresponding to the ideal S−1J of S−1B. • IfA ≈ B then the categories of complexes Comp(A−Mod) and Comp(B −Mod) are equivalent ( Comp(A−Mod) ≈ Comp(B −Mod) for short) and for all central multiplicative set S of A, 138 O. D. Diallo, M. B. Maaouia and M. Sanghare Comp ( S−1A−Mod ) ≈ Comp ( S−1B −Mod )
函子局部化S-1()与范畴等价的Morita理论
本文得到的主要结果是:•如果A是环,S是满足左Ore条件的A的饱和乘集,则左S- 1A-模的范畴S−1A−Mod等价于左A模的范畴S-可分且S-无扭(用STDA−Mod表示)。•如果A和B是森田等价环(记为A≈B),如果S是A的中心饱和乘法集,则环S−1A和S−1B是森田等价环,对于A的任何(双面)理想I,如果J是B的理想对应于I,则S−1I是S−1A的理想对应于S−1B的理想S−1J。•IfA≈B,则配合物Comp(A−Mod)和Comp(B−Mod)的范畴是等价的(简称Comp(A−Mod)≈Comp(B−Mod)),并且对于A的所有中心乘法集S, 138 O. D. Diallo, M. B. Maaouia和M. Sanghare Comp(S−1A−Mod)≈Comp(S−1B−Mod)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信