{"title":"Terrestrial carbon sink in the Northern Hemisphere estimated from the atmospheric CO2 difference between Mauna Loa and the South Pole since 1959","authors":"S. Fan, T. Blaine, J. Sarmiento","doi":"10.3402/TELLUSB.V51I5.16499","DOIUrl":null,"url":null,"abstract":"The diVerence between Mauna Loa and South Pole atmospheric CO 2 concentrations from 1959 to the present scales linearly with CO 2 emissions from fossil fuel burning and cement production (together called fossil CO 2 ). An extrapolation to zero fossil CO 2 emission has been used to suggest that the atmospheric CO 2 concentration at Mauna Loa was 0.8 ppm less than that at the South Pole before the industrial revolution, associated with a northward atmospheric transport of about 1 Gt C yr −1 (Keeling et al. 1989a). Mass conservation requires an equal southward transport in the ocean. However, our ocean general circulation and biogeochemistry model predicts a much smaller pre-industrial carbon transport. Here, we present a new analysis of the Mauna Loa and South Pole CO 2 data, using a general circulation model and a 2-box model of the atmosphere. It is suggested that the present CO 2 diVerence between Mauna Loa and the South Pole is caused by, in addition to fossil CO 2 sources and sinks, a pre-industrial interhemispheric flux of 0.5–0.7 Gt C yr −1 , and a terrestrial sink of 0.8–1.2 Gt C yr −1 in the mid-latitude Northern Hemisphere, balanced by a tropical deforestation source that has been operating continuously in the period from 1959 to the present. DOI: 10.1034/j.1600-0889.1999.t01-4-00001.x","PeriodicalId":54432,"journal":{"name":"Tellus Series B-Chemical and Physical Meteorology","volume":"28 1","pages":"863-870"},"PeriodicalIF":2.3000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus Series B-Chemical and Physical Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3402/TELLUSB.V51I5.16499","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 22
Abstract
The diVerence between Mauna Loa and South Pole atmospheric CO 2 concentrations from 1959 to the present scales linearly with CO 2 emissions from fossil fuel burning and cement production (together called fossil CO 2 ). An extrapolation to zero fossil CO 2 emission has been used to suggest that the atmospheric CO 2 concentration at Mauna Loa was 0.8 ppm less than that at the South Pole before the industrial revolution, associated with a northward atmospheric transport of about 1 Gt C yr −1 (Keeling et al. 1989a). Mass conservation requires an equal southward transport in the ocean. However, our ocean general circulation and biogeochemistry model predicts a much smaller pre-industrial carbon transport. Here, we present a new analysis of the Mauna Loa and South Pole CO 2 data, using a general circulation model and a 2-box model of the atmosphere. It is suggested that the present CO 2 diVerence between Mauna Loa and the South Pole is caused by, in addition to fossil CO 2 sources and sinks, a pre-industrial interhemispheric flux of 0.5–0.7 Gt C yr −1 , and a terrestrial sink of 0.8–1.2 Gt C yr −1 in the mid-latitude Northern Hemisphere, balanced by a tropical deforestation source that has been operating continuously in the period from 1959 to the present. DOI: 10.1034/j.1600-0889.1999.t01-4-00001.x
期刊介绍:
Tellus B: Chemical and Physical Meteorology along with its sister journal Tellus A: Dynamic Meteorology and Oceanography, are the international, peer-reviewed journals of the International Meteorological Institute in Stockholm, an independent non-for-profit body integrated into the Department of Meteorology at the Faculty of Sciences of Stockholm University, Sweden. Aiming to promote the exchange of knowledge about meteorology from across a range of scientific sub-disciplines, the two journals serve an international community of researchers, policy makers, managers, media and the general public.