A vectorial approach to generalize the remainder theorem

IF 0.5 Q3 MATHEMATICS
Marcos A. Hidalgo Rosas, F. Laudano
{"title":"A vectorial approach to generalize the remainder theorem","authors":"Marcos A. Hidalgo Rosas, F. Laudano","doi":"10.52846/ami.v49i1.1478","DOIUrl":null,"url":null,"abstract":"\"We propose a new computational proof for the division algorithm that, using vector algebra, generalizes the remainder theorem to divisions for polynomials of any degree over a generic integral domain. Then, we extend this result to calculate the pseudo-divisions. Later, starting from the previous theorems, we obtain some algorithms that calculate the pseudo-remainder and the pseudo-quotient while avoiding long division. Finally, we provide examples and comparisons indicating that these algorithms are efficient in divisions by sparse polynomials and their divisors, as cyclotomic polynomials.\"","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"2 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v49i1.1478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

"We propose a new computational proof for the division algorithm that, using vector algebra, generalizes the remainder theorem to divisions for polynomials of any degree over a generic integral domain. Then, we extend this result to calculate the pseudo-divisions. Later, starting from the previous theorems, we obtain some algorithms that calculate the pseudo-remainder and the pseudo-quotient while avoiding long division. Finally, we provide examples and comparisons indicating that these algorithms are efficient in divisions by sparse polynomials and their divisors, as cyclotomic polynomials."
用向量方法推广剩余定理
“我们提出了一个新的除法算法的计算证明,使用向量代数,将余数定理推广到一般积分域上任意次多项式的除法。然后,我们将这个结果推广到伪除法的计算中。然后,从前面的定理出发,我们得到了一些在避免长除法的情况下计算伪余数和伪商的算法。最后,我们提供了实例和比较,表明这些算法在稀疏多项式及其除数(如环形多项式)的除法中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
10.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信