Joint quantization and error diffusion of color images using competitive learning

P. Scheunders, S. D. Backer
{"title":"Joint quantization and error diffusion of color images using competitive learning","authors":"P. Scheunders, S. D. Backer","doi":"10.1109/ICIP.1997.648087","DOIUrl":null,"url":null,"abstract":"A competitive learning scheme for color image quantization is elaborated, in which the dithering process for eliminating contouring effects, instead of performed a posteriori, is imbedded in the quantization process. Quantization is performed by clustering in color space. The dithering process is a simple error diffusion which diffuses the quantization error made by one pixel to its local neighborhood. For small color palettes, this is demonstrated to improve the visual quality of quantized images.","PeriodicalId":92344,"journal":{"name":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","volume":"24 1","pages":"811-814 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1997.648087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

A competitive learning scheme for color image quantization is elaborated, in which the dithering process for eliminating contouring effects, instead of performed a posteriori, is imbedded in the quantization process. Quantization is performed by clustering in color space. The dithering process is a simple error diffusion which diffuses the quantization error made by one pixel to its local neighborhood. For small color palettes, this is demonstrated to improve the visual quality of quantized images.
基于竞争学习的彩色图像联合量化与误差扩散
提出了一种彩色图像量化的竞争学习方案,该方案将消除轮廓效应的抖动过程嵌入到量化过程中,而不是进行后验处理。量化是通过色彩空间的聚类来实现的。抖动过程是一种简单的误差扩散过程,它将一个像素的量化误差扩散到其局部邻域。对于小的调色板,这被证明可以提高量化图像的视觉质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信