A. García‐Rodríguez, T. Govezensky, C. Gershenson, G. Naumis, R. Barrio
{"title":"Extracting Real Social Interactions from a Debate of CoViD-19 Policies on Twitter: the Case of Mexico","authors":"A. García‐Rodríguez, T. Govezensky, C. Gershenson, G. Naumis, R. Barrio","doi":"10.1142/s021952592150017x","DOIUrl":null,"url":null,"abstract":"Twitter is a popular social medium for sharing opinions and engaging in topical debates, yet presents a wide spread of misinformation, especially in political debates, from bots and adversarial attacks. The current state-of-the-art methods for detecting humans and bots in Twitter often lack generalizability beyond English. Here, a language-agnostic method to detect real users and their interactions by leveraging network topology from retweets is presented. To that end, the chosen topic is COVID-19 policies in Mexico, which has been considered by users as polemic. Two kinds of network are built: a directed network of retweets;and the co-event network, where a non-directed link between two users exists if they have retweeted the same post in a given time window (projection of a bipartite network). Then, single node properties of these networks, such as the clustering coefficient and the degree, are studied. Three kinds of users are observed: some with a high clustering coefficient but a very small degree, a second group with zero clustering coefficient and a variable degree, and a third group in which the clustering coefficient as a function of the degree decays as a power law. This third group represents ∼2% of the users and is characteristic of dynamical networks with feedback. The latter seems to represent strongly interacting followers/followed in a real social network as confirmed by an inspection of such nodes. A percolation analysis of the resulting co-retweet and co-hashtag network reveals the relevance of such weak links, typical of real social human networks. The presented methods are simple to implement in other social media platforms and can be used to mitigate misinformation and conflicts. [ FROM AUTHOR] Copyright of Advances in Complex Systems is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":"92 1","pages":"2150017:1-2150017:19"},"PeriodicalIF":0.7000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Complex Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021952592150017x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Twitter is a popular social medium for sharing opinions and engaging in topical debates, yet presents a wide spread of misinformation, especially in political debates, from bots and adversarial attacks. The current state-of-the-art methods for detecting humans and bots in Twitter often lack generalizability beyond English. Here, a language-agnostic method to detect real users and their interactions by leveraging network topology from retweets is presented. To that end, the chosen topic is COVID-19 policies in Mexico, which has been considered by users as polemic. Two kinds of network are built: a directed network of retweets;and the co-event network, where a non-directed link between two users exists if they have retweeted the same post in a given time window (projection of a bipartite network). Then, single node properties of these networks, such as the clustering coefficient and the degree, are studied. Three kinds of users are observed: some with a high clustering coefficient but a very small degree, a second group with zero clustering coefficient and a variable degree, and a third group in which the clustering coefficient as a function of the degree decays as a power law. This third group represents ∼2% of the users and is characteristic of dynamical networks with feedback. The latter seems to represent strongly interacting followers/followed in a real social network as confirmed by an inspection of such nodes. A percolation analysis of the resulting co-retweet and co-hashtag network reveals the relevance of such weak links, typical of real social human networks. The presented methods are simple to implement in other social media platforms and can be used to mitigate misinformation and conflicts. [ FROM AUTHOR] Copyright of Advances in Complex Systems is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)
期刊介绍:
Advances in Complex Systems aims to provide a unique medium of communication for multidisciplinary approaches, either empirical or theoretical, to the study of complex systems. The latter are seen as systems comprised of multiple interacting components, or agents. Nonlinear feedback processes, stochastic influences, specific conditions for the supply of energy, matter, or information may lead to the emergence of new system qualities on the macroscopic scale that cannot be reduced to the dynamics of the agents. Quantitative approaches to the dynamics of complex systems have to consider a broad range of concepts, from analytical tools, statistical methods and computer simulations to distributed problem solving, learning and adaptation. This is an interdisciplinary enterprise.