Gaussian mixture model for relevance feedback in image retrieval

Fang Qian, Mingjing Li, Lei Zhang, HongJiang Zhang, Bo Zhang
{"title":"Gaussian mixture model for relevance feedback in image retrieval","authors":"Fang Qian, Mingjing Li, Lei Zhang, HongJiang Zhang, Bo Zhang","doi":"10.1109/ICME.2002.1035760","DOIUrl":null,"url":null,"abstract":"Relevance feedback (RF) has become a powerful technique in content-based image retrieval. Most RF methods assume that positive images follow the single Gaussian distribution, which is not sufficient to model the actual distribution of images due to the gap between the semantic concept and low-level features. In this paper, the Gaussian mixture model (GMM) is applied to represent the distribution of positive images in relevance feedback, and a novel method is proposed to estimate the parameters of the GMM. Both positive and negative examples are used to estimate the number of Gaussian components. Furthermore, due to the lack of training samples, unlabeled data are also incorporated to estimate the covariance matrices. Experimental results show that our GMM-based RF method outperforms that based on a single Gaussian model.","PeriodicalId":90694,"journal":{"name":"Proceedings. IEEE International Conference on Multimedia and Expo","volume":"22 1","pages":"229-232 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2002.1035760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

Relevance feedback (RF) has become a powerful technique in content-based image retrieval. Most RF methods assume that positive images follow the single Gaussian distribution, which is not sufficient to model the actual distribution of images due to the gap between the semantic concept and low-level features. In this paper, the Gaussian mixture model (GMM) is applied to represent the distribution of positive images in relevance feedback, and a novel method is proposed to estimate the parameters of the GMM. Both positive and negative examples are used to estimate the number of Gaussian components. Furthermore, due to the lack of training samples, unlabeled data are also incorporated to estimate the covariance matrices. Experimental results show that our GMM-based RF method outperforms that based on a single Gaussian model.
图像检索中相关反馈的高斯混合模型
在基于内容的图像检索中,相关反馈已成为一种强有力的技术。大多数RF方法假设正图像遵循单高斯分布,由于语义概念和底层特征之间的差距,这不足以模拟图像的实际分布。本文采用高斯混合模型(GMM)来表示相关反馈中正图像的分布,并提出了一种新的高斯混合模型参数估计方法。正负两种例子都被用来估计高斯分量的数量。此外,由于缺乏训练样本,还使用未标记的数据来估计协方差矩阵。实验结果表明,基于gmm的射频识别方法优于基于单一高斯模型的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信