Quantum abstract interpretation

Nengkun Yu, J. Palsberg
{"title":"Quantum abstract interpretation","authors":"Nengkun Yu, J. Palsberg","doi":"10.1145/3453483.3454061","DOIUrl":null,"url":null,"abstract":"In quantum computing, the basic unit of information is a qubit. Simulation of a general quantum program takes exponential time in the number of qubits, which makes simulation infeasible beyond 50 qubits on current supercomputers. So, for the understanding of larger programs, we turn to static techniques. In this paper, we present an abstract interpretation of quantum programs and we use it to automatically verify assertions in polynomial time. Our key insight is to let an abstract state be a tuple of projections. For such domains, we present abstraction and concretization functions that form a Galois connection and we use them to define abstract operations. Our experiments on a laptop have verified assertions about the Bernstein-Vazirani, GHZ, and Grover benchmarks with 300 qubits.","PeriodicalId":20557,"journal":{"name":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453483.3454061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

In quantum computing, the basic unit of information is a qubit. Simulation of a general quantum program takes exponential time in the number of qubits, which makes simulation infeasible beyond 50 qubits on current supercomputers. So, for the understanding of larger programs, we turn to static techniques. In this paper, we present an abstract interpretation of quantum programs and we use it to automatically verify assertions in polynomial time. Our key insight is to let an abstract state be a tuple of projections. For such domains, we present abstraction and concretization functions that form a Galois connection and we use them to define abstract operations. Our experiments on a laptop have verified assertions about the Bernstein-Vazirani, GHZ, and Grover benchmarks with 300 qubits.
量子抽象解释
在量子计算中,信息的基本单位是量子位。一般量子程序的模拟需要量子位数的指数级时间,这使得模拟在当前的超级计算机上不可能超过50个量子位。因此,为了理解更大的程序,我们转向静态技术。本文给出了量子程序的抽象解释,并利用它在多项式时间内自动验证断言。我们的关键见解是让抽象状态成为一个投影元组。对于这样的域,我们提出了抽象和具体化函数,形成伽罗瓦连接,并使用它们来定义抽象操作。我们在笔记本电脑上的实验已经验证了伯恩斯坦-瓦齐拉尼、千兆赫和格罗弗300量子位基准的断言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信