Segmentation and location of abnormality in brain MR images using distributed estimation

A. Vithyavallipriya, B. Sankaragomathi, T. Ramakrishnan
{"title":"Segmentation and location of abnormality in brain MR images using distributed estimation","authors":"A. Vithyavallipriya, B. Sankaragomathi, T. Ramakrishnan","doi":"10.1109/ICEVENT.2013.6496568","DOIUrl":null,"url":null,"abstract":"This paper presents a modern semi supervised scheme for the detection and segmentation of abnormalities present in the brain MR images. The high degree of automation can be attained by using semi supervised learning, because it does not require any pathology modeling. If the dimensionality of the data is large then the estimation of the probability density function is not possible. To overcome this every image is handled as a network of locally coherent image partitions. Median filter is used for preserving edges while removing noise. Contrast enhancement automatically adjusts the intensity values of the image to achieve a better quality. The block wise separation is carried out by calculating the parameter like principal component analysis (PCA), Eigen value, Eigen vector, maximum likelihood function. The maximum likelihood function which estimating the abnormality for each partition is formulated. The likelihood function consists of a model and a data term and is formulated as a quadratic programming problem.","PeriodicalId":6426,"journal":{"name":"2013 International Conference on Emerging Trends in VLSI, Embedded System, Nano Electronics and Telecommunication System (ICEVENT)","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Emerging Trends in VLSI, Embedded System, Nano Electronics and Telecommunication System (ICEVENT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEVENT.2013.6496568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a modern semi supervised scheme for the detection and segmentation of abnormalities present in the brain MR images. The high degree of automation can be attained by using semi supervised learning, because it does not require any pathology modeling. If the dimensionality of the data is large then the estimation of the probability density function is not possible. To overcome this every image is handled as a network of locally coherent image partitions. Median filter is used for preserving edges while removing noise. Contrast enhancement automatically adjusts the intensity values of the image to achieve a better quality. The block wise separation is carried out by calculating the parameter like principal component analysis (PCA), Eigen value, Eigen vector, maximum likelihood function. The maximum likelihood function which estimating the abnormality for each partition is formulated. The likelihood function consists of a model and a data term and is formulated as a quadratic programming problem.
基于分布式估计的脑磁共振图像异常分割与定位
本文提出了一种用于检测和分割脑磁共振图像异常的现代半监督方案。高度的自动化可以通过使用半监督学习来实现,因为它不需要任何病理建模。如果数据的维数很大,则不可能估计概率密度函数。为了克服这个问题,每个图像都作为局部连贯图像分区的网络来处理。中值滤波用于在去除噪声的同时保留边缘。对比度增强自动调整图像的强度值,以获得更好的质量。通过计算主成分分析(PCA)、特征值、特征向量、极大似然函数等参数进行分块分离。给出了估计各分区异常的最大似然函数。似然函数由一个模型和一个数据项组成,并被表述为一个二次规划问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信