Применение машинного обучения для диагностики некоторых социально значимых заболеваний по выдыхаемому человеком воздуху методом инфракрасной лазерной спектроскопии

Иг. С. Голяк, Павел Вячеславович Бережанский, А Ю Седова, Т.А. Гутырчик, О. А. Небритова, А. Н. Морозов, Д.Р. Анфимов, И. Б. Винтайкин, А. А. Коноплева, П.П. Дёмкин, И. Л. Фуфурин
{"title":"Применение машинного обучения для диагностики некоторых социально значимых заболеваний по выдыхаемому человеком воздуху методом инфракрасной лазерной спектроскопии","authors":"Иг. С. Голяк, Павел Вячеславович Бережанский, А Ю Седова, Т.А. Гутырчик, О. А. Небритова, А. Н. Морозов, Д.Р. Анфимов, И. Б. Винтайкин, А. А. Коноплева, П.П. Дёмкин, И. Л. Фуфурин","doi":"10.21883/os.2023.06.55917.109-23","DOIUrl":null,"url":null,"abstract":"The infrared spectra of the air exhaled by several groups of volunteers were studied: those suffering from type 1 diabetes, bronchial asthma, and pneumonia. To record infrared spectra, a tunable quantum-cascade laser (QCL) was used. QCL emits in the wavelength range from 5.3 to 12.8 μm in a pulsed mode with a pulse width of 50 ns, a power of up to 150 mW, and a tuning step of 1 cm-1. The laser is optically coupled to an astigmatic gas cell of the Herriot type with an optical path length of 76 m. A difference was found in the intensity of selective lines of biomarker molecules in the spectra of exhaled air of healthy volunteers compared to similar indicators of volunteers suffering from a certain disease. For an example of methods such as the support vector machine (SVM), the k-nearest neighbors (k-NN) and the random forest algorithm (RandomForest), the possibility of classifying volunteers by the infrared spectra of their exhaled air is shown. The use of dimensionality reduction methods (PCA and t-SNE) made it possible to increase the accuracy of disease classification up to 98% in terms of the accuracy metric.","PeriodicalId":24059,"journal":{"name":"Оптика и спектроскопия","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Оптика и спектроскопия","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21883/os.2023.06.55917.109-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The infrared spectra of the air exhaled by several groups of volunteers were studied: those suffering from type 1 diabetes, bronchial asthma, and pneumonia. To record infrared spectra, a tunable quantum-cascade laser (QCL) was used. QCL emits in the wavelength range from 5.3 to 12.8 μm in a pulsed mode with a pulse width of 50 ns, a power of up to 150 mW, and a tuning step of 1 cm-1. The laser is optically coupled to an astigmatic gas cell of the Herriot type with an optical path length of 76 m. A difference was found in the intensity of selective lines of biomarker molecules in the spectra of exhaled air of healthy volunteers compared to similar indicators of volunteers suffering from a certain disease. For an example of methods such as the support vector machine (SVM), the k-nearest neighbors (k-NN) and the random forest algorithm (RandomForest), the possibility of classifying volunteers by the infrared spectra of their exhaled air is shown. The use of dimensionality reduction methods (PCA and t-SNE) made it possible to increase the accuracy of disease classification up to 98% in terms of the accuracy metric.
用红外激光光谱学来诊断人类呼吸中的一些社会相关疾病
研究人员对几组志愿者呼出的空气的红外光谱进行了研究,这些志愿者分别患有1型糖尿病、支气管哮喘和肺炎。利用可调谐量子级联激光器(QCL)记录红外光谱。QCL以脉冲模式发射5.3 ~ 12.8 μm波长,脉冲宽度为50 ns,功率高达150 mW,调谐步长为1 cm-1。该激光器与一个光程长度为76 m的赫里奥式散像气腔光学耦合。与患有某种疾病的志愿者相比,健康志愿者呼出的空气光谱中生物标记分子的选择性谱线的强度存在差异。以支持向量机(SVM)、k近邻(k-NN)和随机森林算法(RandomForest)等方法为例,展示了通过呼出空气的红外光谱对志愿者进行分类的可能性。使用降维方法(PCA和t-SNE)可以将疾病分类的准确度提高到98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信