Mixup-Privacy: A simple yet effective approach for privacy-preserving segmentation

B. Kim, J. Dolz, Pierre-Marc Jodoin, Christian Desrosiers
{"title":"Mixup-Privacy: A simple yet effective approach for privacy-preserving segmentation","authors":"B. Kim, J. Dolz, Pierre-Marc Jodoin, Christian Desrosiers","doi":"10.48550/arXiv.2305.13756","DOIUrl":null,"url":null,"abstract":"Privacy protection in medical data is a legitimate obstacle for centralized machine learning applications. Here, we propose a client-server image segmentation system which allows for the analysis of multi-centric medical images while preserving patient privacy. In this approach, the client protects the to-be-segmented patient image by mixing it to a reference image. As shown in our work, it is challenging to separate the image mixture to exact original content, thus making the data unworkable and unrecognizable for an unauthorized person. This proxy image is sent to a server for processing. The server then returns the mixture of segmentation maps, which the client can revert to a correct target segmentation. Our system has two components: 1) a segmentation network on the server side which processes the image mixture, and 2) a segmentation unmixing network which recovers the correct segmentation map from the segmentation mixture. Furthermore, the whole system is trained end-to-end. The proposed method is validated on the task of MRI brain segmentation using images from two different datasets. Results show that the segmentation accuracy of our method is comparable to a system trained on raw images, and outperforms other privacy-preserving methods with little computational overhead.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"40 1","pages":"717-729"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information processing in medical imaging : proceedings of the ... conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.13756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Privacy protection in medical data is a legitimate obstacle for centralized machine learning applications. Here, we propose a client-server image segmentation system which allows for the analysis of multi-centric medical images while preserving patient privacy. In this approach, the client protects the to-be-segmented patient image by mixing it to a reference image. As shown in our work, it is challenging to separate the image mixture to exact original content, thus making the data unworkable and unrecognizable for an unauthorized person. This proxy image is sent to a server for processing. The server then returns the mixture of segmentation maps, which the client can revert to a correct target segmentation. Our system has two components: 1) a segmentation network on the server side which processes the image mixture, and 2) a segmentation unmixing network which recovers the correct segmentation map from the segmentation mixture. Furthermore, the whole system is trained end-to-end. The proposed method is validated on the task of MRI brain segmentation using images from two different datasets. Results show that the segmentation accuracy of our method is comparable to a system trained on raw images, and outperforms other privacy-preserving methods with little computational overhead.
Mixup-Privacy:一种简单而有效的隐私保护分割方法
医疗数据中的隐私保护是集中式机器学习应用的合法障碍。在这里,我们提出了一个客户端-服务器图像分割系统,该系统允许在保护患者隐私的同时分析多中心医学图像。在这种方法中,客户端通过将待分割的患者图像混合到参考图像中来保护待分割的患者图像。正如我们的工作所示,将图像混合物与精确的原始内容分离是具有挑战性的,从而使数据对未经授权的人来说是不可用和不可识别的。该代理映像被发送到服务器进行处理。然后,服务器返回分段映射的混合,客户机可以将其还原为正确的目标分段。该系统由两个部分组成:1)服务器端的分割网络,用于处理混合图像;2)分割解混网络,用于从混合图像中恢复正确的分割图。此外,整个系统是端到端的训练。在两个不同数据集的MRI脑分割任务上验证了该方法的有效性。结果表明,该方法的分割精度与在原始图像上训练的系统相当,并且在计算开销很小的情况下优于其他隐私保护方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信