Good Morning to Good Night Greeting Classification Using Mel Frequency Cepstral Coefficient (MFCC) Feature Extraction and Frame Feature Selection

H. Heriyanto
{"title":"Good Morning to Good Night Greeting Classification Using Mel Frequency Cepstral Coefficient (MFCC) Feature Extraction and Frame Feature Selection","authors":"H. Heriyanto","doi":"10.31315/TELEMATIKA.V18I1.4495","DOIUrl":null,"url":null,"abstract":"Purpose:Select the right features on the frame for good accuracyDesign/methodology/approach:Extraction of Mel Frequency Cepstral Coefficient (MFCC) Features and Selection of Dominant Weight Normalized (DWN) FeaturesFindings/result:The accuracy results show that the MFCC method with the 9th frame selection has a higher accuracy rate of 85% compared to other frames.Originality/value/state of the art:Selection of the appropriate features on the frame.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31315/TELEMATIKA.V18I1.4495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Purpose:Select the right features on the frame for good accuracyDesign/methodology/approach:Extraction of Mel Frequency Cepstral Coefficient (MFCC) Features and Selection of Dominant Weight Normalized (DWN) FeaturesFindings/result:The accuracy results show that the MFCC method with the 9th frame selection has a higher accuracy rate of 85% compared to other frames.Originality/value/state of the art:Selection of the appropriate features on the frame.
基于Mel频率倒谱系数(MFCC)特征提取和帧特征选择的早安晚安问候语分类
设计/方法/方法:Mel Frequency Cepstral Coefficient (MFCC) feature的提取和Dominant Weight Normalized (DWN) feature的选择结果/结果:准确率结果表明,第9帧选择的MFCC方法与其他帧相比准确率更高,达到85%。原创性/价值/艺术水平:在框架上选择适当的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信