Acoustic Shape Optimization Based on Isogeometric Wideband Fast Multipole Boundary Element Method with Adjoint Variable Method

IF 1.3 3区 物理与天体物理 Q3 ACOUSTICS
Jie Wang, C. Zheng, Leilei Chen, Haibo Chen
{"title":"Acoustic Shape Optimization Based on Isogeometric Wideband Fast Multipole Boundary Element Method with Adjoint Variable Method","authors":"Jie Wang, C. Zheng, Leilei Chen, Haibo Chen","doi":"10.1142/S2591728520500152","DOIUrl":null,"url":null,"abstract":"A shape optimization approach based on isogeometric wideband fast multipole boundary element method (IGA WFMBEM) in 2D acoustics is developed in this study. The key treatment is shape sensitivity analysis by using the adjoint variable method under isogeometric analysis (IGA) conditions. A set of efficient parameters of the wideband fast multipole method has been identified for IGA boundary element method. Shape optimization is performed by applying the method of moving asymptotes. IGA WFMBEM is validated through an acoustic scattering example. The proposed optimization approach is tested on a sound barrier and two multiple structures to demonstrate its potential for engineering problems.","PeriodicalId":55976,"journal":{"name":"Journal of Theoretical and Computational Acoustics","volume":"16 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Computational Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S2591728520500152","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 6

Abstract

A shape optimization approach based on isogeometric wideband fast multipole boundary element method (IGA WFMBEM) in 2D acoustics is developed in this study. The key treatment is shape sensitivity analysis by using the adjoint variable method under isogeometric analysis (IGA) conditions. A set of efficient parameters of the wideband fast multipole method has been identified for IGA boundary element method. Shape optimization is performed by applying the method of moving asymptotes. IGA WFMBEM is validated through an acoustic scattering example. The proposed optimization approach is tested on a sound barrier and two multiple structures to demonstrate its potential for engineering problems.
基于伴随变量法等几何宽带快速多极边界元法的声形优化
提出了一种基于等几何宽带快速多极边界元法的二维声学形状优化方法。在等几何分析(IGA)条件下,采用伴随变量法进行形状敏感性分析是关键。为IGA边界元法确定了一组宽带快速多极子法的有效参数。采用移动渐近线法进行形状优化。通过声散射算例对IGA WFMBEM进行了验证。在一个音障和两个多重结构上对所提出的优化方法进行了测试,以证明其在工程问题上的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Theoretical and Computational Acoustics
Journal of Theoretical and Computational Acoustics Computer Science-Computer Science Applications
CiteScore
2.90
自引率
42.10%
发文量
26
期刊介绍: The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics. Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信