A. Ogienagbon, M. Khalifeh, Xinxiang Yang, E. Kuru
{"title":"Manuscript Title: Characterization of Microannuli at the Cement-Casing Interface: Development of Methodology","authors":"A. Ogienagbon, M. Khalifeh, Xinxiang Yang, E. Kuru","doi":"10.2118/207581-ms","DOIUrl":null,"url":null,"abstract":"\n Formation of microannuli at the interface of cement-casing can create well integrity issues. X-ray CT and Optical microscopy are technological trends that may have potential for direct visualization of microannuli. CT has an advantage of providing non-destructive visualization of microannuli, but its resolution suffers with increase in casing thickness. Conversely, Optical microscopy has the potential of providing higher resolution needed to detect smaller sized microannuli; however, information about microannuli is limited to only a few sections where samples have been sliced. The objective of the current article is to describe a methodology to examine the interface of cement-casing. Experimental work was combined with literature review. This includes both direct visualization methods, evaluation of current trends to better understand the characteristics and geometric variation of relevant leakage paths. We generate test specimens consisting of cement plugs, various steel casing thickness and nano-coated aluminium casings. Hydraulic sealability tests were conducted by injecting water at the cement-casing interface. Flow rates are then interpreted in terms of microannuli aperture and direct visualization of the cement plug-casing interface by CT and Optical microscopy was implemented. The experimental findings of this article will form a basis for studying geometry and size of microannuli as well as modelling of fluid migration.","PeriodicalId":10959,"journal":{"name":"Day 3 Wed, November 17, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, November 17, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207581-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Formation of microannuli at the interface of cement-casing can create well integrity issues. X-ray CT and Optical microscopy are technological trends that may have potential for direct visualization of microannuli. CT has an advantage of providing non-destructive visualization of microannuli, but its resolution suffers with increase in casing thickness. Conversely, Optical microscopy has the potential of providing higher resolution needed to detect smaller sized microannuli; however, information about microannuli is limited to only a few sections where samples have been sliced. The objective of the current article is to describe a methodology to examine the interface of cement-casing. Experimental work was combined with literature review. This includes both direct visualization methods, evaluation of current trends to better understand the characteristics and geometric variation of relevant leakage paths. We generate test specimens consisting of cement plugs, various steel casing thickness and nano-coated aluminium casings. Hydraulic sealability tests were conducted by injecting water at the cement-casing interface. Flow rates are then interpreted in terms of microannuli aperture and direct visualization of the cement plug-casing interface by CT and Optical microscopy was implemented. The experimental findings of this article will form a basis for studying geometry and size of microannuli as well as modelling of fluid migration.