Multi-Period Workload Balancing in Last-Mile Urban Delivery

Yanguo Wang, Lei Zhao, M. Savelsbergh, Shengnan Wu
{"title":"Multi-Period Workload Balancing in Last-Mile Urban Delivery","authors":"Yanguo Wang, Lei Zhao, M. Savelsbergh, Shengnan Wu","doi":"10.1287/trsc.2022.1132","DOIUrl":null,"url":null,"abstract":"In the daily dispatching of last-mile urban delivery, a delivery manager has to consider workload balance among couriers to maintain workforce morale. We consider two types of workload: incentive workload, which relates to the delivery quantity and affects a courier’s income, and effort workload, which relates to the delivery time and affects a courier’s health. Incentive workload has to be balanced over a relatively long period of time (a payroll cycle—a week or a month), whereas effort workload has to be balanced over a relatively short period of time (a shift or a day). We introduce a multi-period workload balancing problem under stochastic demand and dynamic daily dispatching, formulate it as a Markov decision process (MDP), and derive a lower bound on the optimal value of the MDP model. We propose a balanced penalty policy based on cost function approximation and use a hybrid algorithm combining the modified nested partitions method and the KN++ procedure to search for an optimal policy parameter. A comprehensive numerical study demonstrates that the proposed balanced penalty policy performs close to optimal on small instances and outperforms four benchmark policies on large instances, and provides insight into the impact of demand variation and a manager’s importance weighting of operating cost and workload balance.","PeriodicalId":23247,"journal":{"name":"Transp. Sci.","volume":"2 1","pages":"1348-1368"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transp. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.2022.1132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the daily dispatching of last-mile urban delivery, a delivery manager has to consider workload balance among couriers to maintain workforce morale. We consider two types of workload: incentive workload, which relates to the delivery quantity and affects a courier’s income, and effort workload, which relates to the delivery time and affects a courier’s health. Incentive workload has to be balanced over a relatively long period of time (a payroll cycle—a week or a month), whereas effort workload has to be balanced over a relatively short period of time (a shift or a day). We introduce a multi-period workload balancing problem under stochastic demand and dynamic daily dispatching, formulate it as a Markov decision process (MDP), and derive a lower bound on the optimal value of the MDP model. We propose a balanced penalty policy based on cost function approximation and use a hybrid algorithm combining the modified nested partitions method and the KN++ procedure to search for an optimal policy parameter. A comprehensive numerical study demonstrates that the proposed balanced penalty policy performs close to optimal on small instances and outperforms four benchmark policies on large instances, and provides insight into the impact of demand variation and a manager’s importance weighting of operating cost and workload balance.
城市最后一公里配送的多时段负荷平衡
在城市最后一英里快递的日常调度中,配送经理必须考虑快递员之间的工作量平衡,以保持员工的士气。我们考虑了两种类型的工作量:一种是激励工作量,它与送货数量有关,影响快递员的收入;另一种是努力工作量,它与送货时间有关,影响快递员的健康。激励工作量必须在相对较长的时间内(一周或一个月的工资周期)平衡,而努力工作量必须在相对较短的时间内(一个班次或一天)平衡。引入了随机需求和动态日调度下的多周期工作负荷平衡问题,将其描述为马尔可夫决策过程(MDP),导出了MDP模型最优值的下界。提出了一种基于代价函数近似的平衡惩罚策略,并使用改进的嵌套分区法和k++过程相结合的混合算法来搜索最优策略参数。全面的数值研究表明,所提出的平衡惩罚策略在小实例上的性能接近最优,在大实例上的性能优于四种基准策略,并提供了需求变化和管理者对运营成本和工作负载平衡的重要性加权的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信