Higher derivative supersymmetric nonlinear sigma models on Hermitian symmetric spaces and BPS states therein

M. Nitta, S. Sasaki
{"title":"Higher derivative supersymmetric nonlinear sigma models on Hermitian symmetric spaces and BPS states therein","authors":"M. Nitta, S. Sasaki","doi":"10.1103/physrevd.103.025001","DOIUrl":null,"url":null,"abstract":"We formulate four-dimensional $\\mathcal{N} = 1$ supersymmetric nonlinear sigma models on Hermitian symmetric spaces with higher derivative terms, free from the auxiliary field problem and the Ostrogradski's ghosts, as gauged linear sigma models. We then study Bogomol'nyi-Prasad-Sommerfield equations preserving 1/2 or 1/4 supersymmetries. We find that there are distinct branches, that we call canonical ($F=0$) and non-canonical ($F\\neq 0$) branches, associated with solutions to auxiliary fields $F$ in chiral multiplets. For the ${\\mathbb C}P^N$ model, we obtain a supersymmetric ${\\mathbb C}P^N$ Skyrme-Faddeev model in the canonical branch while in the non-canonical branch the Lagrangian consists of solely the ${\\mathbb C}P^N$ Skyrme-Faddeev term without a canonical kinetic term. These structures can be extended to the Grassmann manifold $G_{M,N} = SU(M)/[SU(M-N)\\times SU(N) \\times U(1)]$. For other Hermitian symmetric spaces such as the quadric surface $Q^{N-2}=SO(N)/[SO(N-2) \\times U(1)])$, we impose F-term (holomorphic) constraints for embedding them into ${\\mathbb C}P^{N-1}$ or Grassmann manifold. We find that these constraints are consistent in the canonical branch but yield additional constraints on the dynamical fields thus reducing the target spaces in the non-canonical branch.","PeriodicalId":8443,"journal":{"name":"arXiv: High Energy Physics - Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevd.103.025001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We formulate four-dimensional $\mathcal{N} = 1$ supersymmetric nonlinear sigma models on Hermitian symmetric spaces with higher derivative terms, free from the auxiliary field problem and the Ostrogradski's ghosts, as gauged linear sigma models. We then study Bogomol'nyi-Prasad-Sommerfield equations preserving 1/2 or 1/4 supersymmetries. We find that there are distinct branches, that we call canonical ($F=0$) and non-canonical ($F\neq 0$) branches, associated with solutions to auxiliary fields $F$ in chiral multiplets. For the ${\mathbb C}P^N$ model, we obtain a supersymmetric ${\mathbb C}P^N$ Skyrme-Faddeev model in the canonical branch while in the non-canonical branch the Lagrangian consists of solely the ${\mathbb C}P^N$ Skyrme-Faddeev term without a canonical kinetic term. These structures can be extended to the Grassmann manifold $G_{M,N} = SU(M)/[SU(M-N)\times SU(N) \times U(1)]$. For other Hermitian symmetric spaces such as the quadric surface $Q^{N-2}=SO(N)/[SO(N-2) \times U(1)])$, we impose F-term (holomorphic) constraints for embedding them into ${\mathbb C}P^{N-1}$ or Grassmann manifold. We find that these constraints are consistent in the canonical branch but yield additional constraints on the dynamical fields thus reducing the target spaces in the non-canonical branch.
厄米对称空间上的高导数超对称非线性σ模型及其BPS态
我们在具有高阶导数项的厄米对称空间上建立了四维$\mathcal{N} = 1$超对称非线性σ模型,该模型不存在辅助场问题和Ostrogradski's残差,并作为测量线性σ模型。然后我们研究了保持1/2或1/4超对称的Bogomol'nyi-Prasad-Sommerfield方程。我们发现有不同的分支,我们称之为正则分支($F=0$)和非正则分支($F\neq 0$),它们与手性多态中辅助域$F$的解相关联。对于${\mathbb C}P^N$模型,我们在正则分支中得到了一个超对称的${\mathbb C}P^N$ Skyrme-Faddeev模型,而在非正则分支中,拉格朗日量仅由${\mathbb C}P^N$ Skyrme-Faddeev项组成,没有正则动力学项。这些结构可以推广到Grassmann流形$G_{M,N} = SU(M)/[SU(M-N)\乘以SU(N) \乘以U(1)]$。对于其他厄密对称空间,如二次曲面$Q^{N-2}=SO(N)/[SO(N-2) \乘以U(1)])$,我们将f项(全纯)约束嵌入到${\mathbb C}P^{N-1}$或Grassmann流形中。我们发现这些约束在正则分支中是一致的,但在动力场上产生了额外的约束,从而减少了非正则分支中的目标空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信