Shadow Detection with Conditional Generative Adversarial Networks

Vu Nguyen, Tomas F. Yago Vicente, Maozheng Zhao, Minh Hoai, D. Samaras
{"title":"Shadow Detection with Conditional Generative Adversarial Networks","authors":"Vu Nguyen, Tomas F. Yago Vicente, Maozheng Zhao, Minh Hoai, D. Samaras","doi":"10.1109/ICCV.2017.483","DOIUrl":null,"url":null,"abstract":"We introduce scGAN, a novel extension of conditional Generative Adversarial Networks (GAN) tailored for the challenging problem of shadow detection in images. Previous methods for shadow detection focus on learning the local appearance of shadow regions, while using limited local context reasoning in the form of pairwise potentials in a Conditional Random Field. In contrast, the proposed adversarial approach is able to model higher level relationships and global scene characteristics. We train a shadow detector that corresponds to the generator of a conditional GAN, and augment its shadow accuracy by combining the typical GAN loss with a data loss term. Due to the unbalanced distribution of the shadow labels, we use weighted cross entropy. With the standard GAN architecture, properly setting the weight for the cross entropy would require training multiple GANs, a computationally expensive grid procedure. In scGAN, we introduce an additional sensitivity parameter w to the generator. The proposed approach effectively parameterizes the loss of the trained detector. The resulting shadow detector is a single network that can generate shadow maps corresponding to different sensitivity levels, obviating the need for multiple models and a costly training procedure. We evaluate our method on the large-scale SBU and UCF shadow datasets, and observe up to 17% error reduction with respect to the previous state-of-the-art method.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"18 1","pages":"4520-4528"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"156","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 156

Abstract

We introduce scGAN, a novel extension of conditional Generative Adversarial Networks (GAN) tailored for the challenging problem of shadow detection in images. Previous methods for shadow detection focus on learning the local appearance of shadow regions, while using limited local context reasoning in the form of pairwise potentials in a Conditional Random Field. In contrast, the proposed adversarial approach is able to model higher level relationships and global scene characteristics. We train a shadow detector that corresponds to the generator of a conditional GAN, and augment its shadow accuracy by combining the typical GAN loss with a data loss term. Due to the unbalanced distribution of the shadow labels, we use weighted cross entropy. With the standard GAN architecture, properly setting the weight for the cross entropy would require training multiple GANs, a computationally expensive grid procedure. In scGAN, we introduce an additional sensitivity parameter w to the generator. The proposed approach effectively parameterizes the loss of the trained detector. The resulting shadow detector is a single network that can generate shadow maps corresponding to different sensitivity levels, obviating the need for multiple models and a costly training procedure. We evaluate our method on the large-scale SBU and UCF shadow datasets, and observe up to 17% error reduction with respect to the previous state-of-the-art method.
基于条件生成对抗网络的阴影检测
我们介绍了scGAN,这是条件生成对抗网络(GAN)的新扩展,专为图像中的阴影检测这一具有挑战性的问题而设计。以前的阴影检测方法侧重于学习阴影区域的局部外观,而在条件随机场中以成对电位的形式使用有限的局部上下文推理。相比之下,所提出的对抗方法能够模拟更高层次的关系和全局场景特征。我们训练了一个对应于条件GAN生成器的阴影检测器,并通过将典型GAN损失与数据丢失项相结合来增强其阴影准确性。由于阴影标签的不平衡分布,我们使用加权交叉熵。在标准GAN架构中,正确设置交叉熵的权重需要训练多个GAN,这是一个计算成本很高的网格过程。在scGAN中,我们向发生器引入了一个额外的灵敏度参数w。该方法有效地参数化了训练好的检测器的损耗。由此产生的阴影检测器是一个单一的网络,可以生成对应于不同灵敏度水平的阴影图,避免了对多个模型和昂贵的训练过程的需要。我们在大规模SBU和UCF阴影数据集上评估了我们的方法,并观察到与之前最先进的方法相比,误差减少了17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信