Infinitely many periodic solutions to a class of perturbed second-order impulsive Hamiltonian systems

J. Graef, S. Heidarkhani, L. Kong
{"title":"Infinitely many periodic solutions to a class of perturbed second-order impulsive Hamiltonian systems","authors":"J. Graef, S. Heidarkhani, L. Kong","doi":"10.7153/DEA-09-16","DOIUrl":null,"url":null,"abstract":"We investigate the existence of infinitely many periodic solutions to a class of perturbed second-order impulsive Hamiltonian systems. Our approach is based on variational methods and critical point theory.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"9 1","pages":"195-212"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-09-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We investigate the existence of infinitely many periodic solutions to a class of perturbed second-order impulsive Hamiltonian systems. Our approach is based on variational methods and critical point theory.
一类摄动二阶脉冲哈密顿系统的无穷多周期解
研究了一类扰动二阶脉冲哈密顿系统无穷多个周期解的存在性。我们的方法是基于变分方法和临界点理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信