{"title":"Incrementally maintaining run-length encoded attributes in column stores","authors":"Abhijeet Mohapatra, M. Genesereth","doi":"10.1145/2351476.2351493","DOIUrl":null,"url":null,"abstract":"Run-length encoding is a popular compression scheme which is used extensively to compress the attribute values in column stores. Out of order insertion of tuples potentially degrades the compression achieved using run-length encoding and consequently, the performance of reads. The in-place insertions, deletions and updates of tuples into a column store relation with n tuples take O(n) time. The linear cost is typically avoided by amortizing the cost of updates in batches. However, the relation is decompressed and subsequently re-compressed after applying a batch of updates. This leads to added time time complexity. We propose a novel indexing scheme called count indexes that supports O(log n) in-place insertions, deletions, updates and look ups on a run-length encoded sequence with n runs. We also show that count indexes efficiently update a batch of tuples requiring almost a constant time per updated tuple. Additionally, we show that count indexes are optimal. We extend count indexes to support O(log n) updates on bitmapped sequences with n values and adapt them to block-based stores.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"315 1","pages":"146-154"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2351476.2351493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Run-length encoding is a popular compression scheme which is used extensively to compress the attribute values in column stores. Out of order insertion of tuples potentially degrades the compression achieved using run-length encoding and consequently, the performance of reads. The in-place insertions, deletions and updates of tuples into a column store relation with n tuples take O(n) time. The linear cost is typically avoided by amortizing the cost of updates in batches. However, the relation is decompressed and subsequently re-compressed after applying a batch of updates. This leads to added time time complexity. We propose a novel indexing scheme called count indexes that supports O(log n) in-place insertions, deletions, updates and look ups on a run-length encoded sequence with n runs. We also show that count indexes efficiently update a batch of tuples requiring almost a constant time per updated tuple. Additionally, we show that count indexes are optimal. We extend count indexes to support O(log n) updates on bitmapped sequences with n values and adapt them to block-based stores.