D. Mahayana, David Petra Natanael, Muhammad Fadhl ‘Abbas
{"title":"Analysis and Simulation of COVID-19 Spread in Indonesia Using SIR and SIR-D Modelling with Optimization","authors":"D. Mahayana, David Petra Natanael, Muhammad Fadhl ‘Abbas","doi":"10.15676/ijeei.2022.14.2.6","DOIUrl":null,"url":null,"abstract":"The emergence of the COVID-19 virus in the world and Indonesia since March 2020 has made it difficult for all elements of society. At the same time, there is one alternative solution to provide an overview to the public and the government so that they can take further action in dealing with the pandemic, that is by modeling the spread of COVID-19. One of the known disease modeling is SIR model, which is a model that divides individuals into certain groups/compartments. The SIR model and one of its derivatives, namely SIR-D, was developed to analyze and simulate several scenarios of the spread of a pandemic. There are 3 simulation scenarios made, namely a scenario without vaccination, a scenario with vaccination, and a scenario with vaccination without being accompanied by strict health protocols. The simulations of the models show that the vaccination process has an impact on reducing the spread of COVID-19, although it is less significant due to the vaccination process that is not optimal and comprehensive. Meanwhile, if the vaccination process is not carried out according to health protocols, then the spread of the pandemic will increase rapidly and form a second wave in Indonesia. This indicates that the vaccination process cannot be underestimated, and the public must continue to keep following health protocol. In general, it can be concluded that the epidemiological model used can provide an overview of the COVID-19's spread simulation with accuracy level MAPE, 0.41198 for the SIR model and 0.01712 for the SIR-D model.","PeriodicalId":38705,"journal":{"name":"International Journal on Electrical Engineering and Informatics","volume":"&NA; 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15676/ijeei.2022.14.2.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of the COVID-19 virus in the world and Indonesia since March 2020 has made it difficult for all elements of society. At the same time, there is one alternative solution to provide an overview to the public and the government so that they can take further action in dealing with the pandemic, that is by modeling the spread of COVID-19. One of the known disease modeling is SIR model, which is a model that divides individuals into certain groups/compartments. The SIR model and one of its derivatives, namely SIR-D, was developed to analyze and simulate several scenarios of the spread of a pandemic. There are 3 simulation scenarios made, namely a scenario without vaccination, a scenario with vaccination, and a scenario with vaccination without being accompanied by strict health protocols. The simulations of the models show that the vaccination process has an impact on reducing the spread of COVID-19, although it is less significant due to the vaccination process that is not optimal and comprehensive. Meanwhile, if the vaccination process is not carried out according to health protocols, then the spread of the pandemic will increase rapidly and form a second wave in Indonesia. This indicates that the vaccination process cannot be underestimated, and the public must continue to keep following health protocol. In general, it can be concluded that the epidemiological model used can provide an overview of the COVID-19's spread simulation with accuracy level MAPE, 0.41198 for the SIR model and 0.01712 for the SIR-D model.
期刊介绍:
International Journal on Electrical Engineering and Informatics is a peer reviewed journal in the field of electrical engineering and informatics. The journal is published quarterly by The School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia. All papers will be blind reviewed. Accepted papers will be available on line (free access) and printed version. No publication fee. The journal publishes original papers in the field of electrical engineering and informatics which covers, but not limited to, the following scope : Power Engineering Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, Electrical Engineering Materials, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements Telecommunication Engineering Antenna and Wave Propagation, Modulation and Signal Processing for Telecommunication, Wireless and Mobile Communications, Information Theory and Coding, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services, Security Network, and Radio Communication. Computer Engineering Computer Architecture, Parallel and Distributed Computer, Pervasive Computing, Computer Network, Embedded System, Human—Computer Interaction, Virtual/Augmented Reality, Computer Security, VLSI Design-Network Traffic Modeling, Performance Modeling, Dependable Computing, High Performance Computing, Computer Security.