Interpolative generalised Meir-Keeler contraction

Shobha Jain, Vuk Stojiljković, S. Radenović
{"title":"Interpolative generalised Meir-Keeler contraction","authors":"Shobha Jain, Vuk Stojiljković, S. Radenović","doi":"10.5937/vojtehg70-39820","DOIUrl":null,"url":null,"abstract":"Introduction/purpose: The aim of this paper is to introduce the notion of an interpolative generalised Meir-Keeler contractive condition for a pair of self maps in a fuzzy metric space, which enlarges, unifies and generalizes the Meir-Keeler contraction which is for only one self map. Using this, we establish a unique common fixed point theorem for two self maps through weak compatibility. The article includes an example, which shows the validity of our results. Methods: Functional analysis methods with a Meir-Keeler contraction. Results: A unique fixed point for self maps in a fuzzy metric space is obtained. Conclusions: A fixed point of the self maps is obtained.","PeriodicalId":30576,"journal":{"name":"Vojnotehnicki Glasnik","volume":"182 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vojnotehnicki Glasnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/vojtehg70-39820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction/purpose: The aim of this paper is to introduce the notion of an interpolative generalised Meir-Keeler contractive condition for a pair of self maps in a fuzzy metric space, which enlarges, unifies and generalizes the Meir-Keeler contraction which is for only one self map. Using this, we establish a unique common fixed point theorem for two self maps through weak compatibility. The article includes an example, which shows the validity of our results. Methods: Functional analysis methods with a Meir-Keeler contraction. Results: A unique fixed point for self maps in a fuzzy metric space is obtained. Conclusions: A fixed point of the self maps is obtained.
插值广义Meir-Keeler收缩
简介/目的:引入模糊度量空间中一对自映射的插值广义Meir-Keeler压缩条件的概念,将仅适用于一个自映射的Meir-Keeler压缩扩大、统一和推广。在此基础上,通过弱相容建立了两个自映射的唯一公共不动点定理。文中给出了一个算例,说明了我们所得结果的有效性。方法:用Meir-Keeler收缩法进行泛函分析。结果:得到了模糊度量空间中自映射的唯一不动点。结论:得到了自映射的一个不动点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
24
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信