Trending topic discovery of Twitter Tweets using clustering and topic modeling algorithms

Ma. Shiela C. Sapul, T. Aung, Rachsuda Jiamthapthaksin
{"title":"Trending topic discovery of Twitter Tweets using clustering and topic modeling algorithms","authors":"Ma. Shiela C. Sapul, T. Aung, Rachsuda Jiamthapthaksin","doi":"10.1109/JCSSE.2017.8025911","DOIUrl":null,"url":null,"abstract":"There is no previous research that compares the results of k-means, CLOPE clustering and Latent Dirichlet Allocation (LDA) topic modeling algorithms for detecting trending topics on tweets. Since not all tweets contain hashtags, we considered three training data feature sets: hashtags, keywords and keywords + hashtags in this study. Our proposed methodology proved that CLOPE can also be used in a non-transactional database like Twitter data set to answer the trending topic discovery and could provide more topic patterns than k-means and LDA. Using additional feature sets has improved the results of k-means and LDA, thus, keywords + hashtags can identify more meaningful topics.","PeriodicalId":6460,"journal":{"name":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"9 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2017.8025911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

There is no previous research that compares the results of k-means, CLOPE clustering and Latent Dirichlet Allocation (LDA) topic modeling algorithms for detecting trending topics on tweets. Since not all tweets contain hashtags, we considered three training data feature sets: hashtags, keywords and keywords + hashtags in this study. Our proposed methodology proved that CLOPE can also be used in a non-transactional database like Twitter data set to answer the trending topic discovery and could provide more topic patterns than k-means and LDA. Using additional feature sets has improved the results of k-means and LDA, thus, keywords + hashtags can identify more meaningful topics.
使用聚类和主题建模算法的Twitter Tweets趋势主题发现
之前没有研究比较k-means、CLOPE聚类和Latent Dirichlet Allocation (LDA)主题建模算法检测tweets趋势话题的结果。由于并非所有推文都包含hashtag,因此我们在本研究中考虑了三种训练数据特征集:hashtag、keywords和keywords + hashtag。我们提出的方法证明,CLOPE也可以用于非事务性数据库(如Twitter数据集)来回答趋势主题发现问题,并且可以提供比k-means和LDA更多的主题模式。使用额外的特征集改进了k-means和LDA的结果,因此,关键词+标签可以识别更有意义的主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信