Virtual-Reality based Vestibular Ocular Motor Screening for Concussion Detection using Machine-Learning

Khondker Fariha Hossain, Sharif Amit Kamran, Prithul Sarker, Philip Pavilionis, I. Adhanom, N. Murray, A. Tavakkoli
{"title":"Virtual-Reality based Vestibular Ocular Motor Screening for Concussion Detection using Machine-Learning","authors":"Khondker Fariha Hossain, Sharif Amit Kamran, Prithul Sarker, Philip Pavilionis, I. Adhanom, N. Murray, A. Tavakkoli","doi":"10.48550/arXiv.2210.09295","DOIUrl":null,"url":null,"abstract":". Sport-related concussion (SRC) depends on sensory information from visual, vestibular, and somatosensory systems. At the same time, the current clinical administration of Vestibular/Ocular Motor Screening (VOMS) is subjective and deviates among administrators. Therefore, for the assessment and manage-ment of concussion detection, standardization is required to lower the risk of injury and increase the validation among clinicians. With the advancement of technology, virtual reality (VR) can be utilized to advance the standardization of the VOMS, increasing the accuracy of testing administration and decreasing overall false positive rates. In this paper, we experimented with multiple machine learning methods to detect SRC on VR-generated data using VOMS. In our observation, the data generated from VR for smooth pursuit (SP) and the Visual Motion Sensitivity (VMS) tests are highly reliable for concussion detection. Furthermore, we train and evaluate these models, both qualitatively and quan-titatively. Our findings show these models can reach high true-positive-rates of around 99.9 percent of symptom provocation on the VR stimuli-based VOMS vs. current clinical manual VOMS.","PeriodicalId":91444,"journal":{"name":"Advances in visual computing : ... international symposium, ISVC ... : proceedings. International Symposium on Visual Computing","volume":"30 1","pages":"229-241"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in visual computing : ... international symposium, ISVC ... : proceedings. International Symposium on Visual Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.09295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Sport-related concussion (SRC) depends on sensory information from visual, vestibular, and somatosensory systems. At the same time, the current clinical administration of Vestibular/Ocular Motor Screening (VOMS) is subjective and deviates among administrators. Therefore, for the assessment and manage-ment of concussion detection, standardization is required to lower the risk of injury and increase the validation among clinicians. With the advancement of technology, virtual reality (VR) can be utilized to advance the standardization of the VOMS, increasing the accuracy of testing administration and decreasing overall false positive rates. In this paper, we experimented with multiple machine learning methods to detect SRC on VR-generated data using VOMS. In our observation, the data generated from VR for smooth pursuit (SP) and the Visual Motion Sensitivity (VMS) tests are highly reliable for concussion detection. Furthermore, we train and evaluate these models, both qualitatively and quan-titatively. Our findings show these models can reach high true-positive-rates of around 99.9 percent of symptom provocation on the VR stimuli-based VOMS vs. current clinical manual VOMS.
基于虚拟现实的前庭眼运动筛查用于脑震荡检测的机器学习
。运动相关脑震荡(SRC)依赖于视觉、前庭和体感系统的感觉信息。同时,目前临床对前庭/眼运动筛查(VOMS)的管理是主观的,并且在管理人员之间存在偏差。因此,对于脑震荡检测的评估和管理,需要标准化,以降低损伤的风险,并增加临床医生的验证。随着技术的进步,虚拟现实技术可以促进VOMS的标准化,提高检测管理的准确性,降低总体假阳性率。在本文中,我们使用VOMS实验了多种机器学习方法来检测vr生成数据上的SRC。在我们的观察中,由VR生成的平滑追踪(SP)和视觉运动灵敏度(VMS)测试数据对于脑震荡检测是高度可靠的。此外,我们对这些模型进行了定性和定量的训练和评估。我们的研究结果表明,与目前的临床手动VOMS相比,这些模型在基于VR刺激的VOMS上可以达到99.9%左右的高真阳性率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信