Role of Isoprenylcysteine Carboxyl Methyltransferase in Tumor Necrosis Factor-&agr; Stimulation of Expression of Vascular Cell Adhesion Molecule-1 in Endothelial Cells
Mushtaq Ahmad, Yan Zhang, Yong Zhang, Christopher Papharalambus, R. Alexander
{"title":"Role of Isoprenylcysteine Carboxyl Methyltransferase in Tumor Necrosis Factor-&agr; Stimulation of Expression of Vascular Cell Adhesion Molecule-1 in Endothelial Cells","authors":"Mushtaq Ahmad, Yan Zhang, Yong Zhang, Christopher Papharalambus, R. Alexander","doi":"10.1161/01.ATV.0000015884.61894.DC","DOIUrl":null,"url":null,"abstract":"We have previously shown that cytokine stimulation of the expression of vascular cell adhesion molecule-1 (VCAM-1), but not that of intercellular adhesion molecule-1 (ICAM-1), is redox sensitive in endothelial cells. Here, we investigated the role of isoprenylcysteine carboxyl methyltransferase (ICMTase), which methylates isoprenylated CAAX (where C indicates cysteine; A, aliphatic amino acids; and X, almost any other amino acid) proteins, including Rac1, a component of superoxide-generating NAD(P)H oxidase, in the expression of VCAM-1. Pretreatment of endothelial cells with N-acetyl-S-farnesyl-l-cysteine (AFC) or N-acetyl-S-geranylgeranyl-l-cysteine (AGGC), specific inhibitors of ICMTase, inhibited the tumor necrosis factor-&agr; (TNF-&agr;) stimulation of mRNA expression of VCAM-1 but not that of ICAM-1. Endothelial cells expressed constitutively active ICMTase, as suggested by the presence of methylated Rac1 and the methylation of AFC by the cells. TNF-&agr; stimulation of the cells significantly increased the methylation of AFC and Rac1 in endothelial cells. That ICMTase was a component of the redox-sensitive signaling pathway was also suggested by the AFC inhibition of the generation of reactive oxygen species by TNF-&agr;. Interestingly, the dominant-negative isoform of Rac1 was not selective but inhibited the TNF-&agr; stimulation of the mRNA expression of VCAM-1 and ICAM-1. Thus, ICMTase is a critical component of the redox-sensitive VCAM-1-selective signaling pathway, and it appears to activate a discrete inflammatory signaling pathway, at least in part, through the methylation of Rac1.","PeriodicalId":8418,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.ATV.0000015884.61894.DC","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
We have previously shown that cytokine stimulation of the expression of vascular cell adhesion molecule-1 (VCAM-1), but not that of intercellular adhesion molecule-1 (ICAM-1), is redox sensitive in endothelial cells. Here, we investigated the role of isoprenylcysteine carboxyl methyltransferase (ICMTase), which methylates isoprenylated CAAX (where C indicates cysteine; A, aliphatic amino acids; and X, almost any other amino acid) proteins, including Rac1, a component of superoxide-generating NAD(P)H oxidase, in the expression of VCAM-1. Pretreatment of endothelial cells with N-acetyl-S-farnesyl-l-cysteine (AFC) or N-acetyl-S-geranylgeranyl-l-cysteine (AGGC), specific inhibitors of ICMTase, inhibited the tumor necrosis factor-&agr; (TNF-&agr;) stimulation of mRNA expression of VCAM-1 but not that of ICAM-1. Endothelial cells expressed constitutively active ICMTase, as suggested by the presence of methylated Rac1 and the methylation of AFC by the cells. TNF-&agr; stimulation of the cells significantly increased the methylation of AFC and Rac1 in endothelial cells. That ICMTase was a component of the redox-sensitive signaling pathway was also suggested by the AFC inhibition of the generation of reactive oxygen species by TNF-&agr;. Interestingly, the dominant-negative isoform of Rac1 was not selective but inhibited the TNF-&agr; stimulation of the mRNA expression of VCAM-1 and ICAM-1. Thus, ICMTase is a critical component of the redox-sensitive VCAM-1-selective signaling pathway, and it appears to activate a discrete inflammatory signaling pathway, at least in part, through the methylation of Rac1.