Bilinear Hilbert transforms and (sub)bilinear maximal functions along convex curves

Junfeng Li, Haixia Yu
{"title":"Bilinear Hilbert transforms and (sub)bilinear maximal functions along convex curves","authors":"Junfeng Li, Haixia Yu","doi":"10.2140/PJM.2021.310.375","DOIUrl":null,"url":null,"abstract":"In this paper, we determine the $L^p(\\mathbb{R})\\times L^q(\\mathbb{R})\\rightarrow L^r(\\mathbb{R})$ boundedness of the bilinear Hilbert transform $H_{\\gamma}(f,g)$ along a convex curve $\\gamma$ $$H_{\\gamma}(f,g)(x):=\\mathrm{p.\\,v.}\\int_{-\\infty}^{\\infty}f(x-t)g(x-\\gamma(t)) \\,\\frac{\\textrm{d}t}{t},$$ where $p$, $q$, and $r$ satisfy $\\frac{1}{p}+\\frac{1}{q}=\\frac{1}{r}$, and $r>\\frac{1}{2}$, $p>1$, and $q>1$. Moreover, the same $L^p(\\mathbb{R})\\times L^q(\\mathbb{R})\\rightarrow L^r(\\mathbb{R})$ boundedness property holds for the corresponding (sub)bilinear maximal function $M_{\\gamma}(f,g)$ along a convex curve $\\gamma$ $$M_{\\gamma}(f,g)(x):=\\sup_{\\varepsilon>0}\\frac{1}{2\\varepsilon}\\int_{-\\varepsilon}^{\\varepsilon}|f(x-t)g(x-\\gamma(t))| \\,\\textrm{d}t.$$","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/PJM.2021.310.375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we determine the $L^p(\mathbb{R})\times L^q(\mathbb{R})\rightarrow L^r(\mathbb{R})$ boundedness of the bilinear Hilbert transform $H_{\gamma}(f,g)$ along a convex curve $\gamma$ $$H_{\gamma}(f,g)(x):=\mathrm{p.\,v.}\int_{-\infty}^{\infty}f(x-t)g(x-\gamma(t)) \,\frac{\textrm{d}t}{t},$$ where $p$, $q$, and $r$ satisfy $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$, and $r>\frac{1}{2}$, $p>1$, and $q>1$. Moreover, the same $L^p(\mathbb{R})\times L^q(\mathbb{R})\rightarrow L^r(\mathbb{R})$ boundedness property holds for the corresponding (sub)bilinear maximal function $M_{\gamma}(f,g)$ along a convex curve $\gamma$ $$M_{\gamma}(f,g)(x):=\sup_{\varepsilon>0}\frac{1}{2\varepsilon}\int_{-\varepsilon}^{\varepsilon}|f(x-t)g(x-\gamma(t))| \,\textrm{d}t.$$
沿凸曲线的双线性希尔伯特变换和(次)双线性极大函数
本文确定了双线性Hilbert变换$H_{\gamma}(f,g)$沿凸曲线$\gamma$$$H_{\gamma}(f,g)(x):=\mathrm{p.\,v.}\int_{-\infty}^{\infty}f(x-t)g(x-\gamma(t)) \,\frac{\textrm{d}t}{t},$$的$L^p(\mathbb{R})\times L^q(\mathbb{R})\rightarrow L^r(\mathbb{R})$有界性,其中$p$、$q$、$r$满足$\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$、$r>\frac{1}{2}$、$p>1$、$q>1$。此外,对于沿凸曲线的相应(次)双线性极大函数$M_{\gamma}(f,g)$,也具有相同的$L^p(\mathbb{R})\times L^q(\mathbb{R})\rightarrow L^r(\mathbb{R})$有界性 $\gamma$ $$M_{\gamma}(f,g)(x):=\sup_{\varepsilon>0}\frac{1}{2\varepsilon}\int_{-\varepsilon}^{\varepsilon}|f(x-t)g(x-\gamma(t))| \,\textrm{d}t.$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信