A new approach to order reduction using stability equation and big bang big crunch optimization

S. R. Desai, R. Prasad
{"title":"A new approach to order reduction using stability equation and big bang big crunch optimization","authors":"S. R. Desai, R. Prasad","doi":"10.1080/21642583.2013.804463","DOIUrl":null,"url":null,"abstract":"A new method of model order reduction is introduced by combining the merits of big bang big crunch (BBBC) optimization technique and stability equation (SE) method. A linear-continuous single-input single-output system of higher order is considered and reduced to a lower order system. The denominator polynomial of the reduced system is obtained by SE method, whereas the numerator terms are generated using BBBC optimization. Furthermore, step and frequency responses of the original reduced system are plotted. The superiority of the proposed method is justified by solving numerical examples from the available literature and comparing the reduced systems in terms of error indices.","PeriodicalId":22127,"journal":{"name":"Systems Science & Control Engineering: An Open Access Journal","volume":"25 1","pages":"20 - 27"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering: An Open Access Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2013.804463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

Abstract

A new method of model order reduction is introduced by combining the merits of big bang big crunch (BBBC) optimization technique and stability equation (SE) method. A linear-continuous single-input single-output system of higher order is considered and reduced to a lower order system. The denominator polynomial of the reduced system is obtained by SE method, whereas the numerator terms are generated using BBBC optimization. Furthermore, step and frequency responses of the original reduced system are plotted. The superiority of the proposed method is justified by solving numerical examples from the available literature and comparing the reduced systems in terms of error indices.
一种利用稳定性方程和大爆炸大压缩优化的降阶新方法
结合大爆炸大压缩(BBBC)优化技术和稳定性方程(SE)方法的优点,提出了一种新的模型降阶方法。考虑高阶线性连续单输入单输出系统,并将其简化为低阶系统。简化后的系统的分母多项式采用SE法得到,分子项采用BBBC优化生成。此外,还绘制了原简化系统的阶跃响应和频率响应。通过对已有文献中的数值算例进行求解,并对简化后的系统进行误差指标的比较,证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信