Non-pluripolar energy and the complex Monge–Ampère operator

IF 1.2 1区 数学 Q1 MATHEMATICS
M. Andersson, David Witt Nyström, Elizabeth Wulcan
{"title":"Non-pluripolar energy and the complex Monge–Ampère operator","authors":"M. Andersson, David Witt Nyström, Elizabeth Wulcan","doi":"10.1515/crelle-2022-0052","DOIUrl":null,"url":null,"abstract":"Abstract Given a domain Ω ⊂ ℂ n {\\Omega\\subset{\\mathbb{C}}^{n}} we introduce a class of plurisubharmonic (psh) functions 𝒢 ⁢ ( Ω ) {{\\mathcal{G}}(\\Omega)} and Monge–Ampère operators u ↦ [ d ⁢ d c ⁢ u ] p {u\\mapsto[dd^{c}u]^{p}} , p ≤ n {p\\leq n} , on 𝒢 ⁢ ( Ω ) {{\\mathcal{G}}(\\Omega)} that extend the Bedford–Taylor–Demailly Monge–Ampère operators. Here [ d ⁢ d c ⁢ u ] p {[dd^{c}u]^{p}} is a closed positive current of bidegree ( p , p ) {(p,p)} that dominates the non-pluripolar Monge–Ampère current 〈 d ⁢ d c ⁢ u 〉 p {\\langle dd^{c}u\\rangle^{p}} . We prove that [ d ⁢ d c ⁢ u ] p {[dd^{c}u]^{p}} is the limit of Monge–Ampère currents of certain natural regularizations of u. On a compact Kähler manifold ( X , ω ) {(X,\\omega)} we introduce a notion of non-pluripolar energy and a corresponding finite energy class 𝒢 ⁢ ( X , ω ) ⊂ PSH ⁡ ( X , ω ) {{\\mathcal{G}}(X,\\omega)\\subset\\operatorname{PSH}(X,\\omega)} that is a global version of the class 𝒢 ⁢ ( Ω ) {{\\mathcal{G}}(\\Omega)} . From the local construction we get global Monge–Ampère currents [ d ⁢ d c ⁢ φ + ω ] p {[dd^{c}\\varphi+\\omega]^{p}} for φ ∈ 𝒢 ⁢ ( X , ω ) {\\varphi\\in{\\mathcal{G}}(X,\\omega)} that only depend on the current d ⁢ d c ⁢ φ + ω {dd^{c}\\varphi+\\omega} . The limits of Monge–Ampère currents of certain natural regularizations of φ can be expressed in terms of [ d ⁢ d c ⁢ φ + ω ] j {[dd^{c}\\varphi+\\omega]^{j}} for j ≤ p {j\\leq p} . We get a mass formula involving the currents [ d ⁢ d c ⁢ φ + ω ] p {[dd^{c}\\varphi+\\omega]^{p}} that describes the loss of mass of the non-pluripolar Monge–Ampère measure 〈 d ⁢ d c ⁢ φ + ω 〉 n {\\langle dd^{c}\\varphi+\\omega\\rangle^{n}} . The class 𝒢 ⁢ ( X , ω ) {{\\mathcal{G}}(X,\\omega)} includes ω-psh functions with analytic singularities and the class ℰ ⁢ ( X , ω ) {{\\mathcal{E}}(X,\\omega)} of ω-psh functions of finite energy and certain other convex energy classes, although it is not convex itself.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0052","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Given a domain Ω ⊂ ℂ n {\Omega\subset{\mathbb{C}}^{n}} we introduce a class of plurisubharmonic (psh) functions 𝒢 ⁢ ( Ω ) {{\mathcal{G}}(\Omega)} and Monge–Ampère operators u ↦ [ d ⁢ d c ⁢ u ] p {u\mapsto[dd^{c}u]^{p}} , p ≤ n {p\leq n} , on 𝒢 ⁢ ( Ω ) {{\mathcal{G}}(\Omega)} that extend the Bedford–Taylor–Demailly Monge–Ampère operators. Here [ d ⁢ d c ⁢ u ] p {[dd^{c}u]^{p}} is a closed positive current of bidegree ( p , p ) {(p,p)} that dominates the non-pluripolar Monge–Ampère current 〈 d ⁢ d c ⁢ u 〉 p {\langle dd^{c}u\rangle^{p}} . We prove that [ d ⁢ d c ⁢ u ] p {[dd^{c}u]^{p}} is the limit of Monge–Ampère currents of certain natural regularizations of u. On a compact Kähler manifold ( X , ω ) {(X,\omega)} we introduce a notion of non-pluripolar energy and a corresponding finite energy class 𝒢 ⁢ ( X , ω ) ⊂ PSH ⁡ ( X , ω ) {{\mathcal{G}}(X,\omega)\subset\operatorname{PSH}(X,\omega)} that is a global version of the class 𝒢 ⁢ ( Ω ) {{\mathcal{G}}(\Omega)} . From the local construction we get global Monge–Ampère currents [ d ⁢ d c ⁢ φ + ω ] p {[dd^{c}\varphi+\omega]^{p}} for φ ∈ 𝒢 ⁢ ( X , ω ) {\varphi\in{\mathcal{G}}(X,\omega)} that only depend on the current d ⁢ d c ⁢ φ + ω {dd^{c}\varphi+\omega} . The limits of Monge–Ampère currents of certain natural regularizations of φ can be expressed in terms of [ d ⁢ d c ⁢ φ + ω ] j {[dd^{c}\varphi+\omega]^{j}} for j ≤ p {j\leq p} . We get a mass formula involving the currents [ d ⁢ d c ⁢ φ + ω ] p {[dd^{c}\varphi+\omega]^{p}} that describes the loss of mass of the non-pluripolar Monge–Ampère measure 〈 d ⁢ d c ⁢ φ + ω 〉 n {\langle dd^{c}\varphi+\omega\rangle^{n}} . The class 𝒢 ⁢ ( X , ω ) {{\mathcal{G}}(X,\omega)} includes ω-psh functions with analytic singularities and the class ℰ ⁢ ( X , ω ) {{\mathcal{E}}(X,\omega)} of ω-psh functions of finite energy and certain other convex energy classes, although it is not convex itself.
非多极能和复monge - ampantere算子
给定一个域Ω∧∧n {\Omega\subset{\mathbb{C}}^{n}} 我们引入了一类多次谐波(psh)函数𝒢¹(Ω) {{\mathcal{G}}(\Omega)} 和monge - ampontre算子u∈[d ^ d ^ c ^ u] p {你\mapsto[dd^{c}u]^{p}} , p≤n {p\leq n} ,网址:𝒢(Ω) {{\mathcal{G}}(\Omega)} 扩展了Bedford-Taylor-Demailly monge - ampitre算子。这里是[d²d²c²u] p {[dd^]{c}u]^{p}} 为双次(p, p)的闭合正电流 {(p,p)} 支配非多极蒙安培电流< d d cu > p {\langle dd^{c}你\rangle^{p}} . 我们证明了[d ^ d ^ c ^ u] p {[dd^]{c}u]^{p}} 在紧致Kähler流形(X, ω)上,u的某些自然正则化的monge - ampante电流的极限 {(x;\omega)} 引入非多极能的概念和相应的有限能类𝒢(X, ω)∧PSH (X, ω) {{\mathcal{G}}(x;\omega)\subset\operatorname{PSH}(x;\omega)} 这是一个全局版本的课程𝒢¹(Ω) {{\mathcal{G}}(\Omega)} . 从局部构造中我们得到全局的蒙日-安培电流[d ^ d c ^ φ + ω] p {[dd^]{c}\varphi+\omega^{p}} 对于φ∈𝒢(X, ω) {\varphi\in{\mathcal{G}}(x;\omega)} 它只依赖于电流d²c²φ + ω {dd^{c}\varphi+\omega} . φ的某些自然正则化的蒙日-安培电流的极限可以用[d ^ d ^ c ^ φ + ω] j来表示 {[dd^]{c}\varphi+\omega^{j}} 对于j≤p {j\leq p} . 我们得到一个质量公式包含电流[d²d²c²φ + ω] p {[dd^]{c}\varphi+\omega^{p}} 描述了非多极蒙日-安培量的质量损失< d ^ d c ^ φ + ω > n {\langle dd^{c}\varphi+\omega\rangle^{n}} . 该类𝒢(X, ω) {{\mathcal{G}}(x;\omega)} 包括具有解析奇异性的ω-psh函数和类e (X, ω) {{\mathcal{E}}(x;\omega)} 有限能量ω-psh函数和某些其他凸能类,尽管它本身不是凸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信