Use of stable water isotopes to identify stages of the pingo ice core formation

IF 0.7 Q4 GEOSCIENCES, MULTIDISCIPLINARY
J. Chizhova, Y. Vasil'chuk
{"title":"Use of stable water isotopes to identify stages of the pingo ice core formation","authors":"J. Chizhova, Y. Vasil'chuk","doi":"10.15356/2076-6734-2018-4-507-523","DOIUrl":null,"url":null,"abstract":"Te isotopic characteristics of the pingo ice cores are considered. Te distribution of δ18O and δ2H values, dexc, δ18O–δ2H and δ2H–d exc relationships, and the simulation of the distribution of δ18O and δ2H values during the ice formation in a closed system, allowed drawing conclusion about the hydrological conditions and stages of the ice core growth. All pingos (Pestsovoye, Weather, Pingo-20) were formed in draining lake basins in the course of freezing of closed taliks. It is established that the water, which served as a source for the formation of the ice core, was subjected to evaporation still before the ice formation. According to our estimates, the water from which the ice of the Pestsovoye pingo was formed was heavier in values of δ18O and δ2H by 3.9 and 29.7‰, respectively, than the current average annual precipitation in the region. Similarly, for the ice of the core of the Pingo Weather it is 2.9 and 14.5‰, and 5.1 and 27.7‰ for the Pingo-20, respectively. In the ice cores of all considered pingos there is an ice formed in a closed system: in Pingo-20 it is a pure injection ice, while in the Pestsovoye and the Weser ones – the injected-segregated ice. Te frost mounds Pestsovoe and Weser grew under changing hydrological conditions: one part of the ice was formed when there was a free flow of water to the freezing front (open system); the other one – when the water-saturated lenses of the closed talik were frozen (closed system). Te isotopic composition of ice being formed under conditions of a closed system reflects isotopic depletion during freezing and ice formation according to the Rayleigh model. It is expressed in a successive decrease in the values of δ18O and δ2H from the frst portions of ice to the last ones as the freezing continued. Te contrast values of δ18O and δ2H in different parts of the ice being formed in the closed system may be used as an additional tool to identify direction of freezing. In a closed system, the last portions of ice have the greater contrast of the isotope values as compared to the frst portions.","PeriodicalId":43880,"journal":{"name":"Led i Sneg-Ice and Snow","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2018-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Led i Sneg-Ice and Snow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15356/2076-6734-2018-4-507-523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

Te isotopic characteristics of the pingo ice cores are considered. Te distribution of δ18O and δ2H values, dexc, δ18O–δ2H and δ2H–d exc relationships, and the simulation of the distribution of δ18O and δ2H values during the ice formation in a closed system, allowed drawing conclusion about the hydrological conditions and stages of the ice core growth. All pingos (Pestsovoye, Weather, Pingo-20) were formed in draining lake basins in the course of freezing of closed taliks. It is established that the water, which served as a source for the formation of the ice core, was subjected to evaporation still before the ice formation. According to our estimates, the water from which the ice of the Pestsovoye pingo was formed was heavier in values of δ18O and δ2H by 3.9 and 29.7‰, respectively, than the current average annual precipitation in the region. Similarly, for the ice of the core of the Pingo Weather it is 2.9 and 14.5‰, and 5.1 and 27.7‰ for the Pingo-20, respectively. In the ice cores of all considered pingos there is an ice formed in a closed system: in Pingo-20 it is a pure injection ice, while in the Pestsovoye and the Weser ones – the injected-segregated ice. Te frost mounds Pestsovoe and Weser grew under changing hydrological conditions: one part of the ice was formed when there was a free flow of water to the freezing front (open system); the other one – when the water-saturated lenses of the closed talik were frozen (closed system). Te isotopic composition of ice being formed under conditions of a closed system reflects isotopic depletion during freezing and ice formation according to the Rayleigh model. It is expressed in a successive decrease in the values of δ18O and δ2H from the frst portions of ice to the last ones as the freezing continued. Te contrast values of δ18O and δ2H in different parts of the ice being formed in the closed system may be used as an additional tool to identify direction of freezing. In a closed system, the last portions of ice have the greater contrast of the isotope values as compared to the frst portions.
利用稳定的水同位素来确定pingo冰芯形成的阶段
研究了pingo冰芯的同位素特征。δ18O和δ2H值的分布、dexc、δ18O -δ2H和δ2H - dexc的关系,以及在封闭系统中冰形成过程中δ18O和δ2H值的分布模拟,可以得出冰芯生长的水文条件和阶段。所有的pingo (Pestsovoye, Weather, Pingo-20)都是在封闭通道冻结过程中形成的排水湖盆。可以确定的是,作为冰芯形成的来源的水,在冰形成之前就已经蒸发了。根据我们的估计,形成Pestsovoye pingo冰的水的δ18O和δ2H值分别比该地区目前的年平均降水量重3.9和29.7‰。Pingo-20冰芯冰值分别为2.9‰和14.5‰,5.1‰和27.7‰。在所有被认为是冰架的冰芯中,都有一个封闭系统形成的冰:在Pingo-20中,它是纯粹的注入冰,而在Pestsovoye和Weser中,它是注入分离的冰。pessovoe和Weser的霜丘是在不断变化的水文条件下形成的:一部分冰是在有水自由流向冻结锋(开放系统)时形成的;另一个-当封闭对话的水饱和透镜被冻结时(封闭系统)。根据瑞利模型,在封闭系统条件下形成的冰的同位素组成反映了冻结和冰形成过程中的同位素耗竭。它表现为随着冻结的继续,δ18O和δ2H的值从冰的第一部分到最后一部分逐渐减小。在封闭体系中形成的冰的不同部分的δ18O和δ2H的对比值可以作为确定冻结方向的附加工具。在一个封闭的系统中,冰的最后部分与最初部分相比,具有更大的同位素值反差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Led i Sneg-Ice and Snow
Led i Sneg-Ice and Snow GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
42.90%
发文量
11
审稿时长
8 weeks
期刊介绍: The journal was established with the aim of publishing new research results of the Earth cryosphere. Results of works in physics, mechanics, geophysics, and geochemistry of snow and ice are published here together with geographical aspects of the snow-ice phenomena occurrence in their interaction with other components of the environment. The challenge was to discuss the latest results of investigations carried out on Russia’s territory and works performed by Russian investigators together with foreign colleagues. Editorial board works in collaboration with Glaciological Association that is professional community of specialists in glaciology from all republics of the Former Soviet Union which are now new independent states. The journal serves as a platform for the presentation and discussion of new discoveries and results which help to elucidate the state of the Earth’s cryosphere and the characteristics of the evolution of the snow-ice processes and phenomena under the current conditions of rapid climate change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信