Optimizing the Location of the Piezoelectric Actuator and Analyzing Its Effect on the Dynamics of Asymmetric Flexible Spacecraft

IF 0.1 4区 工程技术 Q4 ENGINEERING, AEROSPACE
Kai Cao, Renyuan Xie, Jianmin Zhou, Xiaowei Zhang, Jingji Wang, Shuanglin Li
{"title":"Optimizing the Location of the Piezoelectric Actuator and Analyzing Its Effect on the Dynamics of Asymmetric Flexible Spacecraft","authors":"Kai Cao, Renyuan Xie, Jianmin Zhou, Xiaowei Zhang, Jingji Wang, Shuanglin Li","doi":"10.3390/aerospace10080716","DOIUrl":null,"url":null,"abstract":"To address the challenge of optimizing the placement of actuators on an asymmetric spacecraft continuum system, this paper develops a rigid–flexible electromechanical coupling dynamic model that integrates the interactions among rigidity, flexibility, and electromechanical coupling effects. The model is constructed using ordinary differential equations and partial differential equations (ODE–PDEs) and considers the effects of the installation position and physical characteristics (mass and stiffness) of the piezoelectric (PZT) actuator on an asymmetric flexible spacecraft continuum system. The proposed model aims to accurately capture the complex interactions among the rigid body, flexible appendages, and PZT actuators. Based on the developed model, the installation location of the actuators is optimized using a genetic algorithm with a hybrid optimization criterion. In the numerical simulations, the proposed optimization algorithm is employed to determine the optimal installation position for the actuators. Then, the influence of the actuator’s physical characteristics and installation position on the dynamic properties of the spacecraft and the performance of the control system is investigated. The numerical simulation results demonstrate that the optimization algorithm can effectively identify the appropriate actuator installation location for the desired application. Utilizing the actuator with the optimized position allows for effective vibration suppression while consuming less energy.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"64 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace America","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10080716","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

To address the challenge of optimizing the placement of actuators on an asymmetric spacecraft continuum system, this paper develops a rigid–flexible electromechanical coupling dynamic model that integrates the interactions among rigidity, flexibility, and electromechanical coupling effects. The model is constructed using ordinary differential equations and partial differential equations (ODE–PDEs) and considers the effects of the installation position and physical characteristics (mass and stiffness) of the piezoelectric (PZT) actuator on an asymmetric flexible spacecraft continuum system. The proposed model aims to accurately capture the complex interactions among the rigid body, flexible appendages, and PZT actuators. Based on the developed model, the installation location of the actuators is optimized using a genetic algorithm with a hybrid optimization criterion. In the numerical simulations, the proposed optimization algorithm is employed to determine the optimal installation position for the actuators. Then, the influence of the actuator’s physical characteristics and installation position on the dynamic properties of the spacecraft and the performance of the control system is investigated. The numerical simulation results demonstrate that the optimization algorithm can effectively identify the appropriate actuator installation location for the desired application. Utilizing the actuator with the optimized position allows for effective vibration suppression while consuming less energy.
非对称柔性航天器压电作动器位置优化及其动力学影响分析
为了解决非对称航天器连续体系统中作动器位置优化问题,建立了一种综合了刚性、柔性和机电耦合效应的刚柔耦合动力学模型。利用常微分方程和偏微分方程(ODE-PDEs)建立模型,考虑了压电作动器的安装位置和物理特性(质量和刚度)对非对称柔性航天器连续体系统的影响。该模型旨在准确捕捉刚体、柔性附属物和压电陶瓷作动器之间复杂的相互作用。在此基础上,采用遗传算法和混合优化准则对执行机构的安装位置进行了优化。在数值模拟中,采用所提出的优化算法确定了执行器的最佳安装位置。然后,研究了作动器的物理特性和安装位置对航天器动力学特性和控制系统性能的影响。数值仿真结果表明,该优化算法能够有效地确定执行器的安装位置。利用执行器与优化的位置允许有效的振动抑制,同时消耗更少的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aerospace America
Aerospace America 工程技术-工程:宇航
自引率
0.00%
发文量
9
审稿时长
4-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信