Pitching strategy evaluation via stratified analysis using propensity score

IF 1.1 Q3 SOCIAL SCIENCES, MATHEMATICAL METHODS
Hiroshi Nakahara, K. Takeda, Keisuke Fujii
{"title":"Pitching strategy evaluation via stratified analysis using propensity score","authors":"Hiroshi Nakahara, K. Takeda, Keisuke Fujii","doi":"10.1515/jqas-2021-0060","DOIUrl":null,"url":null,"abstract":"Abstract Recent measurement technologies enable us to analyze baseball at higher levels of complexity. There are, however, still many unclear points around pitching strategy. There are two elements that make it difficult to measure the effect of a pitching strategy. First, most public datasets do not include location data where the catcher demands a ball, which is essential information to obtain the battery’s intent. Second, there are many confounders associated with pitching/batting results when evaluating pitching strategy. We here clarify the effect of pitching attempts to a specific location, e.g., inside or outside. We employ a causal inference framework called stratified analysis using a propensity score to evaluate the effects while removing the effect of confounding factors. We use a pitch-by-pitch dataset of Japanese professional baseball games held in 2014–2019, which includes location data where the catcher demands a ball. The results reveal that an outside pitching attempt is more effective than an inside one to minimize allowed run average. In addition, the stratified analysis shows that the outside pitching attempt is effective regardless of the magnitude of the estimated batter’s ability, and the proportion of pitched inside for pitcher/batter. Our analysis provides practical insights into selecting a pitching strategy to minimize allowed runs.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"17 1","pages":"91 - 102"},"PeriodicalIF":1.1000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2021-0060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Recent measurement technologies enable us to analyze baseball at higher levels of complexity. There are, however, still many unclear points around pitching strategy. There are two elements that make it difficult to measure the effect of a pitching strategy. First, most public datasets do not include location data where the catcher demands a ball, which is essential information to obtain the battery’s intent. Second, there are many confounders associated with pitching/batting results when evaluating pitching strategy. We here clarify the effect of pitching attempts to a specific location, e.g., inside or outside. We employ a causal inference framework called stratified analysis using a propensity score to evaluate the effects while removing the effect of confounding factors. We use a pitch-by-pitch dataset of Japanese professional baseball games held in 2014–2019, which includes location data where the catcher demands a ball. The results reveal that an outside pitching attempt is more effective than an inside one to minimize allowed run average. In addition, the stratified analysis shows that the outside pitching attempt is effective regardless of the magnitude of the estimated batter’s ability, and the proportion of pitched inside for pitcher/batter. Our analysis provides practical insights into selecting a pitching strategy to minimize allowed runs.
用倾向得分分层分析评价投球策略
最近的测量技术使我们能够在更高的复杂水平上分析棒球。然而,在投球策略上仍有许多不清楚的地方。有两个因素使我们很难衡量投球策略的效果。首先,大多数公共数据集不包括接球手需要球的位置数据,而这是获取电池意图的必要信息。其次,在评估投球策略时,有许多与投球/击球结果相关的混杂因素。我们在这里澄清投球尝试到一个特定的位置,例如,内部或外部的影响。我们采用一种称为分层分析的因果推理框架,使用倾向评分来评估影响,同时消除混杂因素的影响。我们使用了2014-2019年举行的日本职业棒球比赛的每一球数据集,其中包括接球手需要球的位置数据。结果显示,外场投球比内场投球更能有效地减少失分。此外,分层分析表明,无论估计击球手的能力大小,以及投手/击球手的内投比例如何,外投尝试都是有效的。我们的分析为选择投球策略以减少失分提供了实际的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Quantitative Analysis in Sports
Journal of Quantitative Analysis in Sports SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
2.00
自引率
12.50%
发文量
15
期刊介绍: The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信