Homomorphisms of Fourier–Stieltjes algebras

Ross Stokke
{"title":"Homomorphisms of Fourier–Stieltjes algebras","authors":"Ross Stokke","doi":"10.4064/sm200206-6-8","DOIUrl":null,"url":null,"abstract":"Every homomorphism $\\varphi: B(G) \\rightarrow B(H)$ between Fourier-Stieltjes algebras on locally compact groups $G$ and $H$ is determined by a continuous mapping $\\alpha: Y \\rightarrow \\Delta(B(G))$, where $Y$ is a set in the open coset ring of $H$ and $\\Delta(B(G))$ is the Gelfand spectrum of $B(G)$ (a $*$-semigroup). We exhibit a large collection of maps $\\alpha$ for which $\\varphi=j_\\alpha: B(G) \\rightarrow B(H)$ is a completely positive/completely contractive/completely bounded homomorphism and establish converse statements in several instances. For example, we fully characterize all completely positive/completely contractive/completely bounded homomorphisms $\\varphi: B(G) \\rightarrow B(H)$ when $G$ is a Euclidean- or $p$-adic-motion group. In these cases, our description of the completely positive/completely contractive homomorphisms employs the notion of a \"fusion map of a compatible system of homomorphisms/affine maps\" and is quite different from the Fourier algebra situation.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"46 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/sm200206-6-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Every homomorphism $\varphi: B(G) \rightarrow B(H)$ between Fourier-Stieltjes algebras on locally compact groups $G$ and $H$ is determined by a continuous mapping $\alpha: Y \rightarrow \Delta(B(G))$, where $Y$ is a set in the open coset ring of $H$ and $\Delta(B(G))$ is the Gelfand spectrum of $B(G)$ (a $*$-semigroup). We exhibit a large collection of maps $\alpha$ for which $\varphi=j_\alpha: B(G) \rightarrow B(H)$ is a completely positive/completely contractive/completely bounded homomorphism and establish converse statements in several instances. For example, we fully characterize all completely positive/completely contractive/completely bounded homomorphisms $\varphi: B(G) \rightarrow B(H)$ when $G$ is a Euclidean- or $p$-adic-motion group. In these cases, our description of the completely positive/completely contractive homomorphisms employs the notion of a "fusion map of a compatible system of homomorphisms/affine maps" and is quite different from the Fourier algebra situation.
Fourier-Stieltjes代数的同态
在局部紧群$G$和$H$上的Fourier-Stieltjes代数之间的每一个同态$\varphi: B(G) \rightarrow B(H)$由一个连续映射$\alpha: Y \rightarrow \Delta(B(G))$确定,其中$Y$是$H$的开协集环中的一个集合,$\Delta(B(G))$是$B(G)$的Gelfand谱($*$半群)。我们展示了大量的映射$\alpha$,其中$\varphi=j_\alpha: B(G) \rightarrow B(H)$是一个完全正/完全收缩/完全有界同态,并在几个实例中建立了相反的命题。例如,当$G$是欧几里得运动群或$p$运动群时,我们完全刻画了所有完全正/完全收缩/完全有界同态$\varphi: B(G) \rightarrow B(H)$。在这些情况下,我们对完全正/完全收缩同态的描述采用了“同态/仿射映射相容系统的融合映射”的概念,这与傅里叶代数的情况完全不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信