Direct regularized reconstruction for the three-dimensional Calderón problem

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
K. Knudsen, A. K. Rasmussen
{"title":"Direct regularized reconstruction for the three-dimensional Calderón problem","authors":"K. Knudsen, A. K. Rasmussen","doi":"10.3934/ipi.2022002","DOIUrl":null,"url":null,"abstract":"Electrical Impedance Tomography gives rise to the severely ill-posed Calderón problem of determining the electrical conductivity distribution in a bounded domain from knowledge of the associated Dirichlet-to-Neumann map for the governing equation. The uniqueness and stability questions for the three-dimensional problem were largely answered in the affirmative in the 1980's using complex geometrical optics solutions, and this led further to a direct reconstruction method relying on a non-physical scattering transform. In this paper, the reconstruction problem is taken one step further towards practical applications by considering data contaminated by noise. Indeed, a regularization strategy for the three-dimensional Calderón problem is presented based on a suitable and explicit truncation of the scattering transform. This gives a certified, stable and direct reconstruction method that is robust to small perturbations of the data. Numerical tests on simulated noisy data illustrate the feasibility and regularizing effect of the method, and suggest that the numerical implementation performs better than predicted by theory.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"29 3 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2022002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Electrical Impedance Tomography gives rise to the severely ill-posed Calderón problem of determining the electrical conductivity distribution in a bounded domain from knowledge of the associated Dirichlet-to-Neumann map for the governing equation. The uniqueness and stability questions for the three-dimensional problem were largely answered in the affirmative in the 1980's using complex geometrical optics solutions, and this led further to a direct reconstruction method relying on a non-physical scattering transform. In this paper, the reconstruction problem is taken one step further towards practical applications by considering data contaminated by noise. Indeed, a regularization strategy for the three-dimensional Calderón problem is presented based on a suitable and explicit truncation of the scattering transform. This gives a certified, stable and direct reconstruction method that is robust to small perturbations of the data. Numerical tests on simulated noisy data illustrate the feasibility and regularizing effect of the method, and suggest that the numerical implementation performs better than predicted by theory.
三维Calderón问题的直接正则化重构
电阻抗层析成像引起了严重不适定Calderón问题,即从控制方程的相关狄利克雷-诺伊曼映射的知识中确定有界域中的电导率分布。在20世纪80年代,三维问题的唯一性和稳定性问题在很大程度上得到了肯定的回答,这进一步导致了依赖于非物理散射变换的直接重建方法。本文通过考虑受噪声污染的数据,使重建问题向实际应用又迈进了一步。实际上,基于合适且明确的散射变换截断,提出了三维Calderón问题的正则化策略。这给出了一种经过验证的、稳定的、直接的重建方法,该方法对数据的小扰动具有鲁棒性。在模拟噪声数据上的数值试验表明了该方法的可行性和正则化效果,并表明该方法的数值实现优于理论预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inverse Problems and Imaging
Inverse Problems and Imaging 数学-物理:数学物理
CiteScore
2.50
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing. This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信