Heat kernel asymptotics for real powers of Laplacians

Pub Date : 2022-03-26 DOI:10.4153/s0008414x23000068
Cipriana Anghel
{"title":"Heat kernel asymptotics for real powers of Laplacians","authors":"Cipriana Anghel","doi":"10.4153/s0008414x23000068","DOIUrl":null,"url":null,"abstract":"A BSTRACT . We describe the small-time heat kernel asymptotics of real powers ∆ r , r ∈ (0 , 1) of a non-negative self-adjoint generalized Laplacian ∆ acting on the sections of a hermitian vector bundle E over a closed oriented manifold M . First we treat separately the asymptotic on the diagonal of M × M and in a compact set away from it. Logarithmic terms appear only if n is odd and r is rational with even denominator. We prove the non-triviality of the coefficients appearing in the diagonal asymptotics, and also the non-locality of some of the coefficients. In the special case r = 1 / 2 , we give a simultaneous formula by proving that the heat kernel of ∆ 1 / 2 is a polyhomogeneous conormal section in E ⊠ E ∗ on the standard blow-up space M heat of the diagonal at time t = 0 inside [0 , ∞ ) × M × M .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008414x23000068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A BSTRACT . We describe the small-time heat kernel asymptotics of real powers ∆ r , r ∈ (0 , 1) of a non-negative self-adjoint generalized Laplacian ∆ acting on the sections of a hermitian vector bundle E over a closed oriented manifold M . First we treat separately the asymptotic on the diagonal of M × M and in a compact set away from it. Logarithmic terms appear only if n is odd and r is rational with even denominator. We prove the non-triviality of the coefficients appearing in the diagonal asymptotics, and also the non-locality of some of the coefficients. In the special case r = 1 / 2 , we give a simultaneous formula by proving that the heat kernel of ∆ 1 / 2 is a polyhomogeneous conormal section in E ⊠ E ∗ on the standard blow-up space M heat of the diagonal at time t = 0 inside [0 , ∞ ) × M × M .
分享
查看原文
拉普拉斯函数实数幂的热核渐近性
摘要。我们描述了作用于封闭定向流形M上的厄米向量束E的截面上的非负自伴随广义拉普拉斯算子的实数幂∆r, r∈(0,1)的小时热核渐近性。首先我们分别处理M × M对角线上的渐近和远离它的紧集合上的渐近。只有当n为奇数,r为有理数且分母为偶数时,才会出现对数项。我们证明了出现在对角渐近中的系数的非平凡性,以及一些系数的非局域性。在r = 1 / 2的特殊情况下,通过证明∆1 / 2的热核是标准爆破空间M上E⊠E∗在t = 0时对角线在[0,∞)× M × M内的热的一个多齐次正交截面,给出了一个联立公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信