A sensitivity analysis of a gonorrhoea dynamics and control model

Q4 Mathematics
L. Omenyi, Aloysius Ezaka, Henry O. Adagba, G. Ozoigbo, Kafayat Elebute
{"title":"A sensitivity analysis of a gonorrhoea dynamics and control model","authors":"L. Omenyi, Aloysius Ezaka, Henry O. Adagba, G. Ozoigbo, Kafayat Elebute","doi":"10.28919/jmcs/7129","DOIUrl":null,"url":null,"abstract":"We formulate and analyse a robust mathematical model of the dynamics of gonorrhoea incorporating passive immunity and control. Our results show that the disease-free and endemic equilibria of the model are both locally and globally asymptotically stable. A sensitivity analysis of the model shows that the dynamics of the model is variable and dependent on waning rate, control parameters and interaction of the latent and infected classes. In particular, the lower the waning rate, the more the exponential decrease in the passive immunity but the susceptible population increases to the equilibrium and wanes asymptotically due to the presence of the control parameters and restricted interaction of the latent and infected classes.","PeriodicalId":36607,"journal":{"name":"Journal of Mathematical and Computational Science","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/jmcs/7129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We formulate and analyse a robust mathematical model of the dynamics of gonorrhoea incorporating passive immunity and control. Our results show that the disease-free and endemic equilibria of the model are both locally and globally asymptotically stable. A sensitivity analysis of the model shows that the dynamics of the model is variable and dependent on waning rate, control parameters and interaction of the latent and infected classes. In particular, the lower the waning rate, the more the exponential decrease in the passive immunity but the susceptible population increases to the equilibrium and wanes asymptotically due to the presence of the control parameters and restricted interaction of the latent and infected classes.
淋病动力学和控制模型的敏感性分析
我们制定和分析淋病纳入被动免疫和控制动力学的一个强大的数学模型。结果表明,该模型的无病平衡点和地方性平衡点是局部和全局渐近稳定的。模型的敏感性分析表明,模型的动力学是可变的,并取决于衰减率、控制参数以及潜伏类和感染类的相互作用。特别是,衰减率越低,被动免疫指数下降越大,但由于控制参数的存在和潜伏类与感染类之间有限的相互作用,易感群体逐渐增加到平衡状态并逐渐减弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
158
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信