An Analysis of Changes Onion Yields in Korea using Panel Regression Analysis and Bayesian Network Model

IF 0.6 Q4 DEVELOPMENT STUDIES
Seung-In Lee, Son, Chan-Su, Lee, Hye-Rim
{"title":"An Analysis of Changes Onion Yields in Korea using Panel Regression Analysis and Bayesian Network Model","authors":"Seung-In Lee, Son, Chan-Su, Lee, Hye-Rim","doi":"10.36464/JRD.2020.43.2.001","DOIUrl":null,"url":null,"abstract":"This study examined the effects of meteorological and farm input cost factors on the onion yields in Korea by employing a panel regression analysis. Also, it investigated the variables’ interdependencies and their relations to the onion yields by using a Bayesian network model. We collected the panel data from 1991 to 2019 for our analysis. More specifically, we used the panel data of the regional meteorological factors by month (cumulative precipitation, cumulative sunshine duration, average relative humidity, average temperature), farm input cost factors of the onion (the cost of fertilizer and the cost of agricultural medicines), and the onion yield of three regions in Korea. We used STATA 14.0 and Hugin Expert for descriptive analysis, panel regression analysis, and the Bayesian network model. Our analysis can be summarized in two significant ways. First, we chose the fixed-effect model based on the Hausman test. The results based on the fixed-effect model confirmed that the average relative humidity (October, -), the cumulative precipitation (January, -; March, +; May, +), the cumulative sunshine duration (April, +), the average temperature (June, -), the cost of fertilizer(+) and the cost of agricultural medicines(+) were the significant variables of * 본 논문의 아이디어 구상에 도움을 주신 농촌진흥청 농업빅데이터일자리팀 조용빈 팀장님, 농촌진흥청과 네덜란드 바헤닝언대학 연구센터(WUR) 간 협력사업으로 추진된 ‘Bayesian Network Modelling & Big Data’ 훈련 프로그램에서 베이지안네트워크 분석 방법을 지도해 주신 Hans Marvin 박사님과 Yamine Bouzembrak 박사님, 그리고 본 논문을 심사해 주시고 유익한 조언을 해 주신 익명의 심사위원님들에게 깊은 감사를 드립니다. 더불어 논문 내용 중 있을 수 있는 오류는 저자들의 책임이며, 본 연구 결과는 저자들의 소속기관 공식 의견이 아닌 개인 의견임을 밝힙니다. ** 농촌진흥청 농업빅데이터일자리팀 박사후연구원. 교신저자. e-mail: silee79@korea.kr *** 농촌진흥청 농업빅데이터일자리팀 농업연구관. **** 농촌진흥청 농업빅데이터일자리팀 농업연구사.","PeriodicalId":45379,"journal":{"name":"Journal of Rural and Community Development","volume":"46 1","pages":"1-28"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rural and Community Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36464/JRD.2020.43.2.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENT STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

This study examined the effects of meteorological and farm input cost factors on the onion yields in Korea by employing a panel regression analysis. Also, it investigated the variables’ interdependencies and their relations to the onion yields by using a Bayesian network model. We collected the panel data from 1991 to 2019 for our analysis. More specifically, we used the panel data of the regional meteorological factors by month (cumulative precipitation, cumulative sunshine duration, average relative humidity, average temperature), farm input cost factors of the onion (the cost of fertilizer and the cost of agricultural medicines), and the onion yield of three regions in Korea. We used STATA 14.0 and Hugin Expert for descriptive analysis, panel regression analysis, and the Bayesian network model. Our analysis can be summarized in two significant ways. First, we chose the fixed-effect model based on the Hausman test. The results based on the fixed-effect model confirmed that the average relative humidity (October, -), the cumulative precipitation (January, -; March, +; May, +), the cumulative sunshine duration (April, +), the average temperature (June, -), the cost of fertilizer(+) and the cost of agricultural medicines(+) were the significant variables of * 본 논문의 아이디어 구상에 도움을 주신 농촌진흥청 농업빅데이터일자리팀 조용빈 팀장님, 농촌진흥청과 네덜란드 바헤닝언대학 연구센터(WUR) 간 협력사업으로 추진된 ‘Bayesian Network Modelling & Big Data’ 훈련 프로그램에서 베이지안네트워크 분석 방법을 지도해 주신 Hans Marvin 박사님과 Yamine Bouzembrak 박사님, 그리고 본 논문을 심사해 주시고 유익한 조언을 해 주신 익명의 심사위원님들에게 깊은 감사를 드립니다. 더불어 논문 내용 중 있을 수 있는 오류는 저자들의 책임이며, 본 연구 결과는 저자들의 소속기관 공식 의견이 아닌 개인 의견임을 밝힙니다. ** 농촌진흥청 농업빅데이터일자리팀 박사후연구원. 교신저자. e-mail: silee79@korea.kr *** 농촌진흥청 농업빅데이터일자리팀 농업연구관. **** 농촌진흥청 농업빅데이터일자리팀 농업연구사.
利用面板回归分析和贝叶斯网络模型分析韩国洋葱产量变化
本研究采用面板回归分析,考察了气象和农业投入成本因素对韩国洋葱产量的影响。此外,本文还利用贝叶斯网络模型研究了变量的相互依赖关系及其与洋葱产量的关系。我们收集了1991年至2019年的面板数据进行分析。更具体地说,我们使用了韩国三个地区按月划分的区域气象因子(累计降水量、累计日照时数、平均相对湿度、平均温度)、洋葱的农业投入成本因子(肥料成本和农用药品成本)和洋葱产量的面板数据。我们使用STATA 14.0和Hugin Expert进行描述性分析、面板回归分析和贝叶斯网络模型。我们的分析可以用两种重要的方式来概括。首先,我们选择了基于Hausman检验的固定效应模型。基于固定效应模型的结果证实,平均相对湿度(10月,-),累积降水量(1月,-;3月,+;+),累计日照时间(4 +),平均气温(6月-),肥料的成本(+)和农业成本的药物(+)的重要变量*본논문의아이디어구상에도움을주신농촌진흥청농업빅데이터일자리팀조용빈팀장님,농촌진흥청과네덜란드바헤닝언대학연구센터(WUR)간협력사업으로추진된的贝叶斯网络模型和大数据훈련프로그램에서베이지안네트워크분석방법을지도해주신汉斯马文박사님과Yamine Bouzembrak박사님,그리고본논문을심사해주시고유익한조언을해주신익명의심사위원님들에게깊은감사를드립니다。더불어논문내용중있을수있는오류는저자들의책임이며,본연구결과는저자들의소속기관공식의견이아닌개인의견임을밝힙니다。**。[qh]电子邮件:silee79@korea.kr * * *농촌진흥청농업빅데이터일자리팀농업연구관。****本节内容为:本节内容为:本节内容为:本节内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
16.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信