One-step estimation for the fractional Gaussian noise at high-frequency

Pub Date : 2020-01-01 DOI:10.1051/PS/2020022
A. Brouste, M. Soltane, I. Votsi
{"title":"One-step estimation for the fractional Gaussian noise at high-frequency","authors":"A. Brouste, M. Soltane, I. Votsi","doi":"10.1051/PS/2020022","DOIUrl":null,"url":null,"abstract":"The present paper concerns the parametric estimation for the fractional Gaussian noise in a high-frequency observation scheme. The sequence of Le Cam’s one-step maximum likelihood estimators (OSMLE) is studied. This sequence is defined by an initial sequence of quadratic generalized variations-based estimators (QGV) and a single Fisher scoring step. The sequence of OSMLE is proved to be asymptotically efficient as the sequence of maximum likelihood estimators but is much less computationally demanding. It is also advantageous with respect to the QGV which is not variance efficient. Performances of the estimators on finite size observation samples are illustrated by means of Monte-Carlo simulations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/PS/2020022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The present paper concerns the parametric estimation for the fractional Gaussian noise in a high-frequency observation scheme. The sequence of Le Cam’s one-step maximum likelihood estimators (OSMLE) is studied. This sequence is defined by an initial sequence of quadratic generalized variations-based estimators (QGV) and a single Fisher scoring step. The sequence of OSMLE is proved to be asymptotically efficient as the sequence of maximum likelihood estimators but is much less computationally demanding. It is also advantageous with respect to the QGV which is not variance efficient. Performances of the estimators on finite size observation samples are illustrated by means of Monte-Carlo simulations.
分享
查看原文
高频分数阶高斯噪声的一步估计
本文研究高频观测方案中分数阶高斯噪声的参数估计问题。研究了Le Cam的一步极大似然估计序列。该序列由基于二次广义变分估计(QGV)的初始序列和单个Fisher评分步骤定义。证明了OSMLE序列作为极大似然估计序列是渐近有效的,但计算量要少得多。相对于方差效率不高的QGV,它也是有利的。通过蒙特卡罗模拟说明了估计器在有限大小观测样本上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信