Torwards marketable efficiency solution-processed kesterite and chalcopyrite photovoltaic devices

D. Mitzi, T. Todorov, O. Gunawan, M. Yuan, Qing Cao, Wei Liu, K. Reuter, Masaru Kuwahara, Kouichi Misumi, A. Kellock, S. Chey, Thomas Goislard de Monsabert, A. Prabhakar, V. Deline, K. Fogel
{"title":"Torwards marketable efficiency solution-processed kesterite and chalcopyrite photovoltaic devices","authors":"D. Mitzi, T. Todorov, O. Gunawan, M. Yuan, Qing Cao, Wei Liu, K. Reuter, Masaru Kuwahara, Kouichi Misumi, A. Kellock, S. Chey, Thomas Goislard de Monsabert, A. Prabhakar, V. Deline, K. Fogel","doi":"10.1109/PVSC.2010.5616865","DOIUrl":null,"url":null,"abstract":"Although CuIn1−xGaxSe2−ySy (CIGS) chalcopyrite and Cu2ZnSn(S,Se)4 (CZTSSe) kesterite-related films offer significant potential for low-cost high-efficiency photovoltaic (PV) devices, the complicated multi-element nature of these materials generally leads to the requirement of more complex and costly deposition processes. This talk focuses on employing the unique solvent properties of hydrazine to solution-deposit CIGS and CZTSSe films for high-performance solar cells. CIGS films are deposited by completely dissolving all elements in hydrazine, solution-depositing a molecular precursor film, and heat treating in an inert atmosphere, to yield a single-phase chalcopyrite film (no post-deposition selenization required). Trace additions of Sb improve grain structure in the resulting film and enhance device performance. Devices based on a glass/Mo/spin-coated CIGS/CdS/i-ZnO/ITO structure yield power conversion efficiencies of as high as 13.6% (AM1.5 illumination; NREL certified). Analogous CZTSSe absorber layers have been processed using a hybrid hydrazine-based slurry approach, enabling liquid-based deposition of kesterite-type films and resulting device efficiencies of as high as 9.6% (AM1.5 illumination; NREL certified)—exceeding the previous kesterite performance record by ∼40%. The combination of improved efficiency, In-free absorber and solution-based processing opens opportunities for development of a low-cost and pervasive technology.","PeriodicalId":6424,"journal":{"name":"2010 35th IEEE Photovoltaic Specialists Conference","volume":"75 1","pages":"000640-000645"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 35th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2010.5616865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Although CuIn1−xGaxSe2−ySy (CIGS) chalcopyrite and Cu2ZnSn(S,Se)4 (CZTSSe) kesterite-related films offer significant potential for low-cost high-efficiency photovoltaic (PV) devices, the complicated multi-element nature of these materials generally leads to the requirement of more complex and costly deposition processes. This talk focuses on employing the unique solvent properties of hydrazine to solution-deposit CIGS and CZTSSe films for high-performance solar cells. CIGS films are deposited by completely dissolving all elements in hydrazine, solution-depositing a molecular precursor film, and heat treating in an inert atmosphere, to yield a single-phase chalcopyrite film (no post-deposition selenization required). Trace additions of Sb improve grain structure in the resulting film and enhance device performance. Devices based on a glass/Mo/spin-coated CIGS/CdS/i-ZnO/ITO structure yield power conversion efficiencies of as high as 13.6% (AM1.5 illumination; NREL certified). Analogous CZTSSe absorber layers have been processed using a hybrid hydrazine-based slurry approach, enabling liquid-based deposition of kesterite-type films and resulting device efficiencies of as high as 9.6% (AM1.5 illumination; NREL certified)—exceeding the previous kesterite performance record by ∼40%. The combination of improved efficiency, In-free absorber and solution-based processing opens opportunities for development of a low-cost and pervasive technology.
面向市场的效率——溶液处理的赤铜矿和黄铜矿光伏器件
尽管CuIn1−xGaxSe2−ySy (CIGS)黄铜矿和Cu2ZnSn(S,Se)4 (CZTSSe) kesterite相关薄膜为低成本高效光伏(PV)器件提供了巨大的潜力,但这些材料复杂的多元素性质通常导致需要更复杂和昂贵的沉积工艺。本讲座的重点是利用联氨独特的溶剂性质来溶液沉积CIGS和CZTSSe薄膜,用于高性能太阳能电池。CIGS薄膜的沉积是通过将所有元素完全溶解在肼中,溶液沉积分子前驱膜,并在惰性气氛中热处理,以产生单相黄铜矿膜(不需要沉积后硒化)。微量Sb的加入改善了薄膜的晶粒结构,提高了器件性能。基于玻璃/Mo/自旋涂层CIGS/CdS/i-ZnO/ITO结构的器件的功率转换效率高达13.6% (AM1.5照度;NREL认证)。类似的CZTSSe吸收层已经使用基于混合肼的浆液方法进行了处理,使kester矿型薄膜的液体沉积成为可能,从而使器件效率高达9.6% (AM1.5照明;NREL认证)-超过之前的kesterite性能记录约40%。提高效率、无腔吸收剂和基于溶液的处理相结合,为低成本和普及技术的发展提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信