Davide Spirito, Yaiza Asensio, L. Hueso, B. Martín‐García
{"title":"Raman spectroscopy in layered hybrid organic-inorganic metal halide perovskites","authors":"Davide Spirito, Yaiza Asensio, L. Hueso, B. Martín‐García","doi":"10.1088/2515-7639/ac7977","DOIUrl":null,"url":null,"abstract":"The continuous progress in the synthesis and characterization of materials in the vast family of hybrid organic-inorganic metal halide perovskites (HOIPs) has been pushed by their exceptional properties mainly in optoelectronic applications. These works highlight the peculiar role of lattice vibrations, which strongly interact with electrons, resulting in coupled states affecting the optical properties. Among these materials, layered (2D) HOIPs have emerged as a promising material platform to address some issues of their three-dimensional counterparts, such as ambient stability and ion migration. Layered HOIPs consist of inorganic layers made of metal halide octahedra separated by layers composed of organic cations. They have attracted much interest not only for applications, but also for their rich phenomenology due to their crystal structure tunability. Here, we give an overview of the main experimental findings achieved via Raman spectroscopy in several configurations and set-ups, and how they contribute to shedding light on the complex structural nature of these fascinating materials. We focus on how the phonon spectrum comes from the interplay of several factors. First, the inorganic and organic parts, whose motions are coupled, contribute with their typical modes which are very different in energy. Nonetheless, the interaction between them is relevant, as it results in low-symmetry crystal structures. Then, the role of external stimuli, such as temperature and pressure, which induce phase transitions affecting the spectrum through change in symmetry of the lattice, octahedral tilting and arrangement of the molecules. Finally, the relevant role of the coupling between the charge carriers and optical phonons is highlighted.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/ac7977","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 4
Abstract
The continuous progress in the synthesis and characterization of materials in the vast family of hybrid organic-inorganic metal halide perovskites (HOIPs) has been pushed by their exceptional properties mainly in optoelectronic applications. These works highlight the peculiar role of lattice vibrations, which strongly interact with electrons, resulting in coupled states affecting the optical properties. Among these materials, layered (2D) HOIPs have emerged as a promising material platform to address some issues of their three-dimensional counterparts, such as ambient stability and ion migration. Layered HOIPs consist of inorganic layers made of metal halide octahedra separated by layers composed of organic cations. They have attracted much interest not only for applications, but also for their rich phenomenology due to their crystal structure tunability. Here, we give an overview of the main experimental findings achieved via Raman spectroscopy in several configurations and set-ups, and how they contribute to shedding light on the complex structural nature of these fascinating materials. We focus on how the phonon spectrum comes from the interplay of several factors. First, the inorganic and organic parts, whose motions are coupled, contribute with their typical modes which are very different in energy. Nonetheless, the interaction between them is relevant, as it results in low-symmetry crystal structures. Then, the role of external stimuli, such as temperature and pressure, which induce phase transitions affecting the spectrum through change in symmetry of the lattice, octahedral tilting and arrangement of the molecules. Finally, the relevant role of the coupling between the charge carriers and optical phonons is highlighted.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.