Analysis of randomized robust PCA for high dimensional data

M. Rahmani, George K. Atia
{"title":"Analysis of randomized robust PCA for high dimensional data","authors":"M. Rahmani, George K. Atia","doi":"10.1109/DSP-SPE.2015.7369522","DOIUrl":null,"url":null,"abstract":"Robust Principal Component Analysis (PCA) (or robust subspace recovery) is a particularly important problem in unsupervised learning pertaining to a broad range of applications. In this paper, we analyze a randomized robust subspace recovery algorithm to show that its complexity is independent of the size of the data matrix. Exploiting the intrinsic low-dimensional geometry of the low rank matrix, the big data matrix is first turned to smaller size compressed data. This is accomplished by selecting a small random subset of the columns of the given data matrix, which is then projected into a random low-dimensional subspace. In the next step, a convex robust PCA algorithm is applied to the compressed data to learn the columns subspace of the low rank matrix. We derive new sufficient conditions, which show that the number of linear observations and the complexity of the randomized algorithm do not depend on the size of the given data.","PeriodicalId":91992,"journal":{"name":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","volume":"75 1","pages":"25-30"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP-SPE.2015.7369522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Robust Principal Component Analysis (PCA) (or robust subspace recovery) is a particularly important problem in unsupervised learning pertaining to a broad range of applications. In this paper, we analyze a randomized robust subspace recovery algorithm to show that its complexity is independent of the size of the data matrix. Exploiting the intrinsic low-dimensional geometry of the low rank matrix, the big data matrix is first turned to smaller size compressed data. This is accomplished by selecting a small random subset of the columns of the given data matrix, which is then projected into a random low-dimensional subspace. In the next step, a convex robust PCA algorithm is applied to the compressed data to learn the columns subspace of the low rank matrix. We derive new sufficient conditions, which show that the number of linear observations and the complexity of the randomized algorithm do not depend on the size of the given data.
高维数据的随机稳健主成分分析
鲁棒主成分分析(PCA)(或鲁棒子空间恢复)是无监督学习中一个特别重要的问题,具有广泛的应用。本文分析了一种随机鲁棒子空间恢复算法,证明了其复杂度与数据矩阵的大小无关。利用低秩矩阵固有的低维几何特性,首先将大数据矩阵转化为较小尺寸的压缩数据。这是通过选择给定数据矩阵列的一个小的随机子集来实现的,然后将其投影到一个随机的低维子空间中。接下来,对压缩后的数据采用凸鲁棒PCA算法学习低秩矩阵的列子空间。我们得到了新的充分条件,证明了线性观测的数量和随机化算法的复杂度不依赖于给定数据的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信