Infinite words and universal free actions

IF 0.1 Q4 MATHEMATICS
O. Kharlampovich, A. Myasnikov, Denis Serbin
{"title":"Infinite words and universal free actions","authors":"O. Kharlampovich, A. Myasnikov, Denis Serbin","doi":"10.1515/gcc-2014-0005","DOIUrl":null,"url":null,"abstract":"Abstract. This is the second paper in a series of four, where we take on the unified theory of non-Archimedean group actions, length functions and infinite words. Here, for an arbitrary group G of infinite words over an ordered abelian group Λ we construct a Λ-tree Γ G $\\Gamma _G$ equipped with a free action of G. Moreover, we show that Γ G $\\Gamma _G$ is a universal tree for G in the sense that it isometrically and equivariantly embeds into every Λ-tree equipped with a free G-action compatible with the original length function on G. Also, for a group G acting freely on a Λ-tree Γ we show how one can easily obtain an embedding of G into the set of reduced infinite words R(Λ,X)$R(\\Lambda , X)$ , where the alphabet X is obtained from the action G on Γ.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"170 1","pages":"55 - 69"},"PeriodicalIF":0.1000,"publicationDate":"2011-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2014-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract. This is the second paper in a series of four, where we take on the unified theory of non-Archimedean group actions, length functions and infinite words. Here, for an arbitrary group G of infinite words over an ordered abelian group Λ we construct a Λ-tree Γ G $\Gamma _G$ equipped with a free action of G. Moreover, we show that Γ G $\Gamma _G$ is a universal tree for G in the sense that it isometrically and equivariantly embeds into every Λ-tree equipped with a free G-action compatible with the original length function on G. Also, for a group G acting freely on a Λ-tree Γ we show how one can easily obtain an embedding of G into the set of reduced infinite words R(Λ,X)$R(\Lambda , X)$ , where the alphabet X is obtained from the action G on Γ.
无限的言语和普遍的自由行动
摘要这是四篇系列论文中的第二篇,我们将讨论非阿基米德群作用,长度函数和无限词的统一理论。在这里,对于有序阿贝尔群Λ上的任意无限词群G,我们构造了一个具有自由G作用的Λ-tree Γ G $\Gamma _G$,并且我们证明了Γ G $\Gamma _G$是G的一棵泛树,因为它等距地、等距地嵌入到每一个具有与G上的原始长度函数兼容的自由G作用的Λ-tree中。对于自由作用于Λ-tree Γ上的群G,我们展示了如何容易地将G嵌入到约简无限词集R(Λ,X) $R(\Lambda , X)$中,其中字母X是由作用于Γ上的G获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信