The parameter dependence of the inverse function delayed model on the success rate of combinatorial optimization problems

Akari Sato, Yoshihiro Hayakawa, Koji Nakajima
{"title":"The parameter dependence of the inverse function delayed model on the success rate of combinatorial optimization problems","authors":"Akari Sato,&nbsp;Yoshihiro Hayakawa,&nbsp;Koji Nakajima","doi":"10.1002/ecjb.20402","DOIUrl":null,"url":null,"abstract":"<p>Much research has been performed regarding attempts to solve NP hard or NP complete problems using neural networks, because high-speed solutions then become possible through parallel processing. However, there is still the local minima problem. The Inverse Function Delayed (ID) model used in this paper is shown to be a powerful avoidance algorithm for the local minima problem, because the dynamics of the model can cause negative resistance and the local minima can be destabilized by this negative resistance. In this paper, the differences with the conventional Hopfield model and the hysteresis neuron model, due to the parameters of the ID model, are discussed successively. Moreover, from a general energy function <i>E</i> of the optimization problem, when a static output state is the solution representation, it is shown that the global minima and the local minima can be separated using the ID model in a problem where <i>E</i>=0 in the global minimum state. Afterwards, the parameter dependence of the success rate is discussed. As a result, a numerical experiment confirmed that a wide optimal parameter range showing a 100% success rate is obtained, though there is a slight special oscillating state (limit cycle). © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 2, 90(11): 41–54, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjb.20402</p>","PeriodicalId":100406,"journal":{"name":"Electronics and Communications in Japan (Part II: Electronics)","volume":"90 11","pages":"41-54"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ecjb.20402","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan (Part II: Electronics)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecjb.20402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Much research has been performed regarding attempts to solve NP hard or NP complete problems using neural networks, because high-speed solutions then become possible through parallel processing. However, there is still the local minima problem. The Inverse Function Delayed (ID) model used in this paper is shown to be a powerful avoidance algorithm for the local minima problem, because the dynamics of the model can cause negative resistance and the local minima can be destabilized by this negative resistance. In this paper, the differences with the conventional Hopfield model and the hysteresis neuron model, due to the parameters of the ID model, are discussed successively. Moreover, from a general energy function E of the optimization problem, when a static output state is the solution representation, it is shown that the global minima and the local minima can be separated using the ID model in a problem where E=0 in the global minimum state. Afterwards, the parameter dependence of the success rate is discussed. As a result, a numerical experiment confirmed that a wide optimal parameter range showing a 100% success rate is obtained, though there is a slight special oscillating state (limit cycle). © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 2, 90(11): 41–54, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjb.20402

逆函数延迟模型参数对组合优化问题成功率的依赖性
许多研究都是关于使用神经网络解决NP困难或NP完全问题的尝试,因为高速解决方案通过并行处理成为可能。但是,仍然存在局部最小值问题。本文所采用的逆函数延迟(ID)模型是解决局部最小问题的一种有效的避免算法,因为模型的动力学特性会引起负阻力,并且该负阻力会使局部最小值失稳。本文先后讨论了由于ID模型参数的不同,与传统Hopfield模型和迟滞神经元模型的区别。此外,从优化问题的一般能量函数E出发,当静态输出状态为解表示时,证明了在全局最小状态E=0的情况下,使用ID模型可以将全局极小值与局部极小值分离。然后,讨论了成功率的参数依赖性。数值实验结果表明,虽然存在轻微的特殊振荡状态(极限环),但在较宽的最优参数范围内获得了100%的成功率。©2007 Wiley期刊公司电子工程学报,2009,29 (1):1 - 4,2007;在线发表于Wiley InterScience (www.interscience.wiley.com)。DOI 10.1002 / ecjb.20402
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信